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Abstract This paper addresses the problem of detecting the
temporal intervals of actions in untrimmed videos. To deal
with this important yet challenging task, we present the struc-
tured segment network (SSN). It is built on temporal propos-
als of actions. SSN models the temporal structure of each
action instance via a structured temporal pyramid. On top of
the pyramid, we further introduce a decomposed discrim-
inative model comprising two classifiers, respectively for
classifying actions and determining completeness. This al-
lows the framework to effectively distinguish positive pro-
posals from background or incomplete ones, thus leading
to both accurate recognition and precise localization. These
components are integrated into a unified network that can
be efficiently trained in an end-to-end manner. Addition-
ally, a simple yet effective temporal action proposal scheme,
dubbed temporal actionness grouping (TAG) is devised to
generate high quality action proposals. We further studied
the importance of the decomposed discriminative model and
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discovered a way to achieve similar accuracy using a sin-
gle classifier, which is also complementary with the original
SSN design. On two challenging benchmarks, THUMOS14
and ActivityNet, our method remarkably outperforms previ-
ous state-of-the-art methods, demonstrating superior accu-
racy and strong adaptivity in handling actions with various
temporal structures.

Keywords Temporal Action Detection · Temporal Action
Localization · Temporal Action Proposals · Human Action
Recognition

1 Introduction

Temporal action detection has drawn increasing attention
from the research community, owing to its numerous poten-
tial applications in surveillance, video analytics, interactive
entertainment, and other areas Oneata et al (2013); Mettes
et al (2015); Yeung et al (2016); Shou et al (2016). A tem-
poral action detection system aims to detect human action
instances’ temporal intervals from untrimmed, and possibly
very long videos. Compared to action recognition, this task
is more challenging, as the model is expected to output not
only the action category, but also the precise starting and
ending time points.

Over the past few years, thanks to the advances in con-
volutional neural networks, the accuracy of action recogni-
tion has been significantly increased Simonyan and Zisser-
man (2014); Tran et al (2015); Fernando et al (2015); Wang
et al (2015, 2016b). Yet, the performances of action detec-
tion methods remain unsatisfactory Yuan et al (2016); Yeung
et al (2016); Singh and Cuzzolin (2016). Existing methods
mostly use the two-stage detection approach, where the ac-
tion proposals are first produced to reduce the search space
and a variety of classifiers are constructed on the proposal
to emit the final detection results. For the two-stage action
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detection approaches, one major challenge in precise tem-
poral localization is the large number of incomplete action
fragments in the proposed temporal regions. Compared with
image object detection, where the two-stage idea is also of-
ten used, there is an inherent difficulty of temporal action
detection in adopting this idea. In untrimmed videos, an ac-
tion instance can be very long or very short in time. And a
small portion of it may have already conveyed enough infor-
mation for a simple action classification task Schindler and
Van Gool (2008). Traditional snippet based classifiers Si-
monyan and Zisserman (2014); Tran et al (2015); Wang et al
(2016b), which are often used as the proposal classifiers.
rely on these discriminative snippets of actions, which would
make it very hard for them to distinguish short, incomplete
proposals, from valid detections (see Fig. 1). Tackling this
challenge requires the model’s capability of temporal struc-
ture analysis. We propose to view the temporal structure
as multiple stages of an action instance, i.e. e.g. starting,
course, and ending. We argue that the capacity of clearly
modeling this stage structure is essential in the success of a
temporal action detection model to precisely locate the tem-
poral intervals.

Structural analysis is not new in computer vision. It has
been well studied in various tasks, e.g. image segmenta-
tion Lafferty et al (2001), scene understanding Hoiem et al
(2008), and human pose estimation Andriluka et al (2009).
Take the most related object detection for example, in de-
formable part based models (DPM) Felzenszwalb et al (2010),
the modeling of the spatial configurations among parts is
crucial. Even with the strong expressive power of convolu-
tional networks Girshick et al (2014), explicitly modeling of
spatial structures, in the form of spatial pyramids Lazebnik
et al (2006); He et al (2014), remains an effective way to
achieve improved performance, as demonstrated in a num-
ber of state-of-the-art object detection frameworks, e.g. Fast
R-CNN Girshick (2015) and region-based FCN Li et al (2016).

In the context of video understanding, although tempo-
ral structures have played an crucial role in action recogni-
tion Niebles et al (2010); Wang et al (2014b); Pirsiavash and
Ramanan (2014); Wang et al (2016c), their modeling in tem-
poral action detection was not as common and successful.
Snippet based methods Mettes et al (2015); Singh and Cuz-
zolin (2016) often process individual snippets independently
without considering the temporal structures among them.
Later works attempt to incorporate temporal structures, but
are often limited to analyzing short clips. S-CNN Shou et al
(2016) models the temporal structures via the 3D convolu-
tion, but its capability is restricted by the underlying archi-
tecture Tran et al (2015), which is designed to accommo-
date only 16 frames. The methods based on recurrent net-
works Donahue et al (2015); Montes et al (2016) rely on
dense snippet sampling and thus are confronted with serious
computational challenges when modeling long-term struc-

Fig. 1 Importance of modeling stage structures in action detection.
We slide window detectors through a video clip with an action instance
of “Tumbling” (green box). Top: The detector builds features without
any stage structure of the action, e.g. average pooling throughout the
window. It produces high responses whenever it sees any discrimina-
tive snippet related to tumbling, making it hard to localize the instance.
Bottom: SSN detector utilizes stage structures (starting, course, and
ending) via structured temporal pyramid pooling. Its response is only
significant when the window is well aligned.

tures. Overall, existing works are limited in two key aspects.
First, the tremendous amount of visual data in videos re-
stricts their capability of modeling long-term dependencies
in an end-to-end manner. Also, they neither provide explicit
modeling of different stages in an activity (e.g. starting and
ending) nor offer a mechanism to assess the completeness,
which, as mentioned, is crucial for accurate action detection.

In this work, we aim to resolve these limitations and
develop an effective technique for temporal action detec-
tion. Specifically, we adopt the proven paradigm of two-
stage “proposal+classification”, but take a significant step
forward by utilizing explicit structural modeling in the tem-
poral dimension. In our model, one complete activity in-
stance is considered as a composition of three major stages,
namely starting, course, and ending. We introduce struc-
tured temporal pyramid pooling to produce a global repre-
sentation of the entire proposal. Then we introduce a decom-
posed discriminative model to jointly classify action cate-
gories and determine completeness of the proposals, which
work collectively to output only complete action instances.
These components are integrated into a unified network, called
structured segment network (SSN). We adopt the sparse snip-
pet sampling strategy Wang et al (2016b), which overcomes
the computational issue for long-term modeling and enables
efficient end-to-end training of SSN. Additionally, we pro-
pose to use multi-scale grouping upon the temporal action-
ness signal to generate action proposals, achieving higher
temporal recall with less proposals to further boost the de-
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tection performance. To further study the effect the design of
SSN, we explored different ways of using a unified classi-
fier for proposal classification, to substitute the decomposed
classifiers in SSN. We demonstrated that through careful de-
sign we can achieve similar level of accuracy with it, we
call this variant of SSN as U-SSN. By ensembling U-SSN
and SSN, we are able to achieve higher detection accuracy.
This again corroborates the structural modeling is the crucial
component in accurate temporal action detection.

The proposed SSN framework excels in the following
aspects: 1) It provides an effective mechanism to model the
temporal structures of activities, and thus the capability of
discriminating between complete and incomplete proposals.
2) It can be efficiently learned in an end-to-end fashion (5
to 15 hours over a large video dataset, e.g. ActivityNet),
and once trained, can perform fast inference of temporal
structures. 3) The method achieves superior detection per-
formance on standard benchmark datasets, establishing new
state-of-the-art for temporal action detection.

2 Related Work

In this section, we review previous works related to ours,
which we categorize into three parts: (1) action recognition,
(2) object detection in images, and (3) temporal action de-
tection in untrimmed videos.

2.1 Action Recognition

Action recognition has been extensively studied in the past
few years Laptev (2005); Wang and Schmid (2013); Simonyan
and Zisserman (2014); Tran et al (2015); Wang et al (2015,
2016b); Zhang et al (2016). Earlier methods are mostly based
on hand-crafted visual features Laptev (2005); Wang and
Schmid (2013). In the past several years, the wide adoption
of convolutional networks (CNNs) has resulted in remark-
able performance gain. CNNs are first introduced to this
task in Karpathy et al (2014). Later, two-stream architec-
tures Simonyan and Zisserman (2014) and 3D-CNN Tran
et al (2015) are proposed to incorporate both appearance
and motion features. These methods are primarily frame-
based and snippet-based, with simple schemes to aggregate
results. There are also efforts that explore long-range tem-
poral structures via temporal pooling or RNNs Wang et al
(2015); Ng et al (2015); Donahue et al (2015). However,
most methods assume well-trimmed videos, where the ac-
tion of interest lasts for nearly the entire duration. Hence,
they don’t need to consider the issue of localizing the ac-
tion instances. It is not until recently that there have been
attempts Wang et al (2017a) to learn action recognition mod-
els from untrimmed videos in the absence of temporal anno-
tations in a weakly-supervised manner.

2.2 Object Detection

The proposed SSN framework is closely related to object
detection frameworks Felzenszwalb et al (2010); Girshick
et al (2014); Ren et al (2015) in still images, where detec-
tion is performed by classifying object proposals into fore-
ground classes and a background class. Traditional object
proposal methods rely on dense sliding windows Felzen-
szwalb et al (2010) and bottom-up methods that exploit low-
level boundary cues Van de Sande et al (2011); Zitnick and
Dollár (2014). Recent proposal methods based on deep neu-
ral networks show better average recall while requiring less
candidates Ren et al (2015). Deep models also introduce
great modeling capacity for capturing object appearances.
With strong visual features, spatial structural modeling Lazeb-
nik et al (2006) remains a key component for detection. In
particular, the operation of RoI pooling Girshick (2015) is
introduced to model the spatial configuration of object with
minimal extra cost. The idea is further reflected in R-FCN Li
et al (2016) where the spatial configuration is handled with
a position sensitive RoI pooling. The idea of embedding the
proposal classifier into the feature extraction network is also
adopted in Sec. 4.

2.3 Temporal Action Detection

Previous works on temporal activity detection mainly use
sliding windows as candidates and focus on designing hand-
crafted feature representations for classification Gaidon et al
(2013); Tang et al (2013); Oneata et al (2013); Mettes et al
(2015); Yuan et al (2016); Jain et al (2014). Sliding-window
based proposals are generated by performing uniform sam-
pling in multiple scales and temporal locations throughout
the whole video. To get a high recall, this data-independent
sampling will need a lot of scales and locations which lead
to prohibitive computational cost. Therefore, one line of re-
cent works are focused on efficient and data-dependent gen-
eration of action proposals specifically designed for long
videos Caba Heilbron et al (2016); Escorcia et al (2016).
Fast TAPCaba Heilbron et al (2016) ranks action candidate
using a dictionary which is learned from trimmed action
instances described by STIP Laptev (2005). DAP Escorcia
et al (2016) and its successor SST Buch et al (2017) use a
long short-term memory (LSTM) or gated recurrent unit(GRU)
network to encode a sequence of video frames and predicts
the location of a fixed number of proposals from the encoded
visual contents in a single shot. Although these methods can
run at a high FPS, a large amount of action proposals as
many as 104 are required to achieve a reasonably high re-
call, which would still be costful for a subsequent classifier.

Another line of works incorporate deep networks into
the detection frameworks and obtain improved performance Ye-
ung et al (2016); Shou et al (2016); De Geest et al (2016). S-
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CNN Shou et al (2016) proposes a multi-stage CNN which
boosts accuracy via a localization network. A more precise
temporal boundary can be achieved by applying temporal
upsampling via a CDC filter on top Shou et al (2017). How-
ever, S-CNN relies on C3D Tran et al (2015) as the feature
extractor, which is initially designed for snippet-wise action
classification. Extending it to detection with possibly long
action proposals needs enforcing an undesired large tem-
poral kernel stride. Another work Yeung et al (2016) uses
Recurrent Neural Network (RNN) to learn a glimpse pol-
icy for predicting the starting and ending points of an ac-
tion. Such sequential prediction is often time-consuming for
processing long videos and it does not support joint train-
ing of the underlying feature extraction CNN. Our method
differs from these approaches in that it explicitly models
the action structure via structural temporal pyramid pool-
ing. By using sparse sampling, we further enable efficient
end-to-end training. Note there are also works on spatial-
temporal detection Gkioxari and Malik (2015); Weinzaepfel
et al (2015); Mettes et al (2016); Wang et al (2016a); Peng
and Schmid (2016); Gu et al (2018) and temporal video seg-
mentation Hoai et al (2011); Li and Loy (2018), which are
beyond the scope of this paper.

3 Structured Segment Network

The proposed structured segment network framework, as shown
in Figure 2, takes as input a video and a set of temporal
action proposals. It outputs a set of predicted activity in-
stances each associated with a category label and a tem-
poral range (delimited by a starting point and an ending
point). From the input to the output, it takes three key steps.
First, the framework relies on a proposal method to pro-
duce a set of temporal proposals of varying durations, where
each proposal comes with a starting and an ending time.
The proposal methods will be discussed in detail in Sec-
tion 5. Our framework considers each proposal as a compo-
sition of three consecutive stages, starting, course, and end-
ing, which respectively capture how the action starts, pro-
ceeds, and ends. Thus upon each proposal, structured tem-
poral pyramid pooling (STPP) are performed by 1) splitting
the proposal into the three stages; 2) building temporal pyra-
midal representation for each stage; 3) building global rep-
resentation for the whole proposal by concatenating stage-
level representations. Finally, two classifiers respectively for
recognizing the activity category and assessing the complete-
ness will be applied on the representation obtained by STPP
and their predictions will be combined, resulting in a sub-
set of complete instances tagged with category labels. Other
proposals, which are considered as either belonging to back-
ground or incomplete, will be filtered out. All the compo-
nents outlined above are integrated into a unified network,
which will be trained in an end-to-end way. For training,

we adopt the sparse snippet sampling strategy Wang et al
(2016b) to approximate the temporal pyramid on dense sam-
ples. By exploiting the redundancy among video snippets,
this strategy can substantially reduce the computational cost,
thus allowing the crucial modeling of long-term temporal
structures.

3.1 Three-Stage Structures

At the input level, a video can be represented as a sequence
of T snippets, denoted as (St)

T
t=1. Here, one snippet contains

several consecutive frames, which, as a whole, is character-
ized by a combination of RGB images and an optical flow
stack Simonyan and Zisserman (2014). Consider a given set
of N proposals P = {pi = [si,ei]}N

i=1. Each proposal pi is
composed of a starting time si and an ending time ei. The
duration of pi is thus di = ei−si. To allow structural analysis
and particularly to determine whether a proposal captures a
complete instance, we need to put it in a context. Hence, we
augment each proposal pi into p′i = [s′i,e

′
i] with where s′i =

si − di/2 and e′i = ei + di/2. In other words, the augmented
proposal p′i doubles the span of pi by extending beyond the
starting and ending points, respectively by di/2. If a pro-
posal accurately aligns well with a groundtruth instance, the
augmented proposal will capture not only the inherent pro-
cess of the activity, but also how it starts and ends. Following
the three-stage notion, we divide the augmented proposal
p′i into three consecutive intervals: ps

i = [s′i,si], pc
i = [si,ei],

and pe
i = [ei,e′i], which are respectively corresponding to the

starting, course, and ending stages.

3.2 Structured Temporal Pyramid Pooling

As mentioned, the structured segment network framework
derives a global representation for each proposal via tem-
poral pyramid pooling. This design is inspired by the suc-
cess of spatial pyramid pooling Lazebnik et al (2006); He
et al (2014) in object recognition and scene classification.
Specifically, given an augmented proposal p′i divided into
three stages ps

i , pc
i , and pe

i , we first compute the stage-wise
feature vectors fs

i , fc
i , and fe

i respectively via temporal pyra-
mid pooling, and then concatenate them into a global repre-
sentation.

Specifically, a stage with interval [s,e] would cover a se-
ries of snippets, denoted as {St |s ≤ t ≤ e}. For each snip-
pet, we can obtain a feature vector vt . Note that we can use
any feature extractor here. In this work, we adopt the effec-
tive two-stream feature representation first proposed in Si-
monyan and Zisserman (2014). Based on these features, we
construct a L-level temporal pyramid where each level evenly
divides the interval into Bl parts. For the i-th part of the l-
th level, whose interval is [sli,eli], we can derive a pooled
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CNN CNN CNN CNN CNN CNN CNN CNN CNN

Activity: Tumbling Complete Tumbling? Yes.

Tumbling Instance

Fig. 2 An overview of the structured segment network framework. On a video from ActivityNet Caba Heilbron et al (2015) there is a candidate
region (green box). We first build the augmented proposal (yellow box) by extending it. The augmented proposal is divided into starting (orange),
course (green), and ending (blue) stages. An additional level of pyramid with two sub-parts is constructed on the course stage. Features from CNNs
are pooled within these five parts and concatenated to form the global region representations. The activity classifier and the completeness classifier
operate on the the region representations to produce activity probability and class conditional completeness probability. The final probability of the
proposal being positive instance is decided by the joint probability from these two classifiers. During training, we sparsely sample L = 9 snippets
from evenly divided segments to approximate the dense temporal pyramid pooling.

feature as

u(l)
i =

1
|eli − sli +1|

eli

∑
t=sli

vt . (1)

Then the overall representation of this stage can be obtained
by concatenating the pooled features across all parts at all
levels as fc

i = (u(l)
i |l = 1, . . . ,L, i = 1, . . . ,Bl).

We treat the three stages differently. Generally, we ob-
served that the course stage, which reflects the activity pro-
cess itself, usually contains richer structure e.g. this process
itself may contain sub-stages. Hence, we use a two-level
pyramid, i.e. L = 2,B1 = 1, and B2 = 2, for the course stage,
while using simpler one-level pyramids (which essentially
reduce to standard average pooling) for starting and end-
ing pyramids. We found empirically that this setting strikes
a good balance between expressive power and complexity.
Finally, the stage-wise features are combined via concatena-
tion. Overall, this construction explicitly leverages the struc-
ture of an activity instance and its surrounding context, and
thus we call it structured temporal pyramid pooling (STPP).

3.3 Activity and Completeness Classifiers

On top of the structured features described above, we intro-
duce two types of classifiers, an activity classifier and a set
of completeness classifiers. Specifically, the activity classi-
fier A classifies input proposals into K +1 classes, i.e. K ac-
tivity classes (with labels 1, . . . ,K) and an additional “back-
ground” class (with label 0). This classifier restricts its scope

to the course stage, making predictions based on the cor-
responding feature fc

i . The completeness classifiers {Ck}K
k=1

are a set of binary classifiers, each for one activity class. Par-
ticularly, Ck predicts whether a proposal captures a complete
activity instance of class k, based on the global representa-
tion {fs

i , fc
i , fe

i } induced by STPP. In this way, the complete-
ness is determined not only on the proposal itself but also on
its surrounding context.

Both types of classifiers are implemented as linear clas-
sifiers on top of high-level features. Given a proposal pi,
the activity classifier will produce a vector of normalized
responses via a softmax layer. From a probabilistic view,
it can be considered as a conditional distribution P(ci|pi),
where ci is the class label. For each activity class k, the cor-
responding completeness classifier Ck will yield a probabil-
ity value, which can be understood as the conditional proba-
bility P(bi|ci, pi), where bi indicates whether pi is complete.
Both outputs together form a joint distribution. When ci ≥ 1,
P(ci,bi|pi) = P(ci|pi) ·P(bi|ci, pi). Hence, we can define a
unified classification loss jointly on both types of classifiers.
With a proposal pi and its label ci:

Lcls(ci,bi; pi) =− logP(ci|pi)−1(ci≥1) logP(bi|ci, pi). (2)

Here, the completeness term P(bi|ci, pi) is only used when
ci ≥ 1, i.e. the proposal pi is not considered as part of the
background. Note that these classifiers together with STPP
are integrated into a single network that is trained in an end-
to-end way.

During training, we collect three types of proposal sam-
ples: (1) positive proposals, i.e. those overlap with the clos-
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Fig. 3 An illustration of three types of proposals. The ground-truth
action instance is denoted in a green box for reference. A positive,
background, and incomplete proposal is denoted in a blue, yellow, and
red box respectively. We emphasize two points: 1) The positive and
incomplete proposal are likely to have similar appearance if we con-
sider only one or two frames inside. Therefore, a structured modeling
is necessary; 2) Both background and incomplete proposals are seen
as negative samples but they have different appearance. Therefore they
should be treated differently.

est groundtruth instances with at least 0.7 IoU; (2) back-
ground proposals, i.e. those that do not overlap with any
groundtruth instances; and (3) incomplete proposals, i.e. those
that satisfy the following criteria: 80% of its own span is
contained in a groundtruth instance, while its IoU with that
instance is below 0.3 (in other words, it just covers a small
part of the instance).

Fig An illustration For these proposal types, we respec-
tively have (ci > 0,bi = 1), ci = 0, and (ci > 0,bi = 0). Each
mini-batch is ensured to contain all three types of proposals.

3.4 Location Regression and Multi-Task Loss

With the structured information encoded in the global fea-
tures, we can not only make categorical predictions, but also
refine the proposal’s temporal interval itself by location re-
gression. We devise a set of location regressors {Rk}K

k=1,
each for an activity class. We follow the design in RCNN Gir-
shick et al (2014), but adapting it for 1D temporal regions.
Particularly, for a positive proposal pi, we regress the rela-
tive changes of both the interval center µi and the span φi
(in log-scale), using the closest groundtruth instance as the
target. With both the classifiers and location regressors, we
define a multi-task loss over an training sample pi, as:

Lcls(ci,bi; pi)+λ ·1(ci≥1 & bi=1)Lreg(µi,φi; pi). (3)

Here, Lreg uses the smooth L1 loss function Girshick (2015).

3.5 Unifying Activity and Completeness Classifiers

Starting from the original formation of two types of clas-
sifiers separately, we take one step further by unifying the
(K + 1) - class activity classifier and a set of K complete-
ness classifiers stated above as one single classifier. Both
incomplete and background proposals are treated as nega-
tive samples, i.e. the 0-th class, while the positive samples
remain the same. We show in Sec. 8 that such unification is
non-trivial since simply using a single classifier incurs infe-
rior performance. To remedy such loss of performance, we
apply the following practices. First, the model parameters
are initialized with the model pre-trained on Kinetics Car-
reira and Zisserman (2017), a larger video dataset. Such pre-
trained model provides stronger discriminative capacity of
activity modeling. Second, a fully-connected layer is added
between the STPP and the final classifier to reduce feature
dimension for ease of training. Third, due to the imbalance
between incomplete and background proposals, we apply a
sample mining method similar to online hard example min-
ing (OHEM) Shrivastava et al (2016), which only calculates
gradients of samples with the highest loss value within a
minibatch. We term this approach as unified structured seg-
ment network (U-SSN).

4 Efficient Training and Inference with SSN

The huge amount of frames pose a serious challenge in com-
putational cost to video analysis. Our structured segment
network also faces this challenge. This section presents two
techniques which we use to reduce the cost and enable end-
to-end training.

4.1 Training with sparse sampling

The structured temporal pyramid, in its original form, relies
on densely sampled snippets. This would lead to excessive
computational cost and memory demand in end-to-end train-
ing over long proposals – in practice, proposals that span
over hundreds of frames are not uncommon. However, dense
sampling is generally unnecessary in our framework. Partic-
ularly, the pooling operation is essentially to collect feature
statistics over a certain region. Such statistics can be well
approximated via a subset of snippets, due to the high re-
dundancy among them.

Motivated by this, we devise a sparse snippet sampling
scheme. Specifically, given a augmented proposal p′i, we evenly
divide it into L = 9 segments, randomly sampling only one
snippet from each segment. Structured temporal pyramid
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pooling is performed for each pooling region on its corre-
sponding segments. This scheme is inspired by the segmen-
tal architecture in Wang et al (2016b), but differs in that
it operates within STPP instead of a global average pool-
ing. In this way, we fix the number of features needed to be
computed regardless of how long the proposal is, thus effec-
tively reducing the computational cost, especially for mod-
eling long-term structures. More importantly, this enables
end-to-end training of the entire framework over a large num-
ber of long proposals.

4.2 Inference with reordered computation

In testing, we sample video snippets with a fixed interval
of 6 frames, and construct the temporal pyramid thereon.
The original formulation of temporal pyramid first computes
pooled features and then applies the classifiers and regres-
sors on top which is not efficient. Actually, for each video,
hundreds of proposals will be generated, and these propos-
als can significantly overlap with each other – therefore, a
considerable portion of the snippets and the features derived
thereon are shared among proposals.

To exploit this redundancy in the computation, we adopt
the idea introduced in position sensitive pooling Li et al
(2016) to improve testing efficiency. Note that our classi-
fiers and regressors are both linear. So the key step in classi-
fication or regression is to multiply a weight matrix W with
the global feature vector f. Recall that f itself is a concate-
nation of multiple features, each pooled over a certain inter-
val. Hence the computation can be written as Wf=∑ j W jf j,
where j indexes different regions along the pyramid. Here,
f j is obtained by average pooling over all snippet-wise fea-
tures within the region r j. Thus, we have

W jf j = W j ·Et∼r j [vt ] = Et∼r j [W jvt ] . (4)

Et∼r j denotes the average pooling over r j, which is a lin-
ear operation and therefore can be exchanged with the ma-
trix multiplication. Eq (4) suggests that the linear responses
w.r.t. the classifiers/regressors can be computed before pool-
ing. In this way, the heavy matrix multiplication can be done
in the CNN for each video over all snippets, and for each
proposal, we only have to pool over the network outputs.
This technique can reduce the processing time after extract-
ing network outputs from around 10 seconds to less than 0.5
second per video on average.

5 Temporal Proposals via Actionness Grouping

In general, SSN accepts arbitrary proposals, e.g. sliding win-
dows Shou et al (2016); Yuan et al (2016). Yet, an effective
proposal method can produce more accurate proposals, and

Fig. 4 Visualization of the temporal actionness grouping process for
proposal generation. Top: Actionness probabilities as a 1D signal se-
quence. Middle: The complement signal. We flood it with different
levels γ . Bottom: Regions obtained by different flooding levels. By
merging the regions according to the grouping criterion, we get the
final set of proposals (in orange color).

thus allowing a small number of proposals to reach a cer-
tain level of performance. In this work, we devise an effec-
tive proposal method called temporal actionness grouping
(TAG).

This method uses an actionness classifier to evaluate the
binary actionness probabilities for individual snippets. The
use of binary actionness for proposals is first introduced in
spatial action detection by Wang et al (2016a). Here we uti-
lize it for temporal action detection.

Our basic idea is to find those continuous temporal re-
gions with mostly high actionness snippets to serve as pro-
posals. To this end, we repurpose a classic watershed algo-
rithm Roerdink and Meijster (2000), applying it to the 1D
signal formed by a sequence of complemented actionness
values, as shown in Figure 4. Imagine the signal as 1D ter-
rain with heights and basins. This algorithm floods water on
this terrain with different “water level” (γ), resulting in a set
of “basins” covered by water, denoted by G(γ). Intuitively,
each “basin” corresponds to a temporal region with high ac-
tionness. The ridges above water then form the blank areas
between basins, as illustrated in Fig. 4.

Given a set of basins G(γ), we devise a grouping scheme
similar to Pont-Tuset et al (2017), which tries to connect
small basins into proposal regions. The scheme works as
follows: it begins with a seed basin, and consecutively ab-
sorbs the basins that follow, until the fraction of the basin
durations over the total duration (i.e. from the beginning of
the first basin to the ending of the last) drops below a certain
threshold τ . The absorbed basins and the blank spaces be-
tween them are then grouped to form a single proposal. We
treat each basin as seed and perform the grouping procedure
to obtain a set of proposals denoted by G′(τ,γ). Note that
we do not choose a specific combination of τ and γ . Instead
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we uniformly sample τ and γ in the range (0,1) with an even
step of 0.05. The combination of these two thresholds leads
to multiple sets of regions. We then take the union of them.
Finally, we apply non-maximal suppression (NMS) to the
union set with IoU threshold 0.95, to filter out highly over-
lapped proposals. The retained proposals will be fed to the
SSN framework.

Algorithm 1 lists the procedural details. First, assume
that we have obtained a sequences of T snippet-level action-
ness scores, denoted as {A1,A2, . . . ,AT}, here T is the length
of video snippets. In order to produce proposals of different
granularities, we vary the actionness thresholds {τi} and the
tolerance thresholds {γ j}. Each iteration of the procedure
will generate a collection of proposals by grouping frag-
ments, based on a certain setting of τi and γ j. In particu-
lar, the fragment grouping operation is described in Algo-
rithm 2.

Algorithm 1 Temporal Actionness Proposal Grouping
INPUT: {At}M

t=1, {τi}N
i=1, {γ j}K

j=1
B ← {}
for i ← 1,N do

for t ← 1,T do
Lt ← δ (St

m >= τi)
end for
for j ← 1,K do

B ← B+AtomicGroup({Li}T
i=1,γ j)

end for
end for
B ← NMS(B,0.95)

OUTPUT: B

Algorithm 2 Atomic Grouping Process
procedure ATOMICGROUP({Lt}T

t=1,γ)
Box ← {}
g ← 0, C+ ← 0, C− ← 0, s ← 0,e ← 0
for t ← 1,T do

if Lt = 1 then
s ← t × (1−g)+ s×g, e ← t
g ← 1, C+ ←C++1

else if g = 1 then
C− ←C−+1
if C−/(t − s+1)≥ γ then

Box ← Box+(s,e)
g ← 0,C+ ← 0,C− ← 0, s ← 0

end if
end if

end for
end procedure

6 Experimental Settings

In this section, we describe the detailed experimental setting.
The experiments are conducted on two large-scale action de-
tection benchmark datasets: ActivityNet Caba Heilbron et al
(2015) and THUMOS14 Jiang et al (2014). First, we intro-
duce these datasets and their experimental setup. Next, we
describe the implementation details of our methods.

6.1 Datasets and Evaluation Protocol

The ActivityNet Dataset Caba Heilbron et al (2015) 1 has
two versions, v1.2 and v1.3. The former contains 9682 videos
in 100 classes, while the latter, which is a superset of v1.2
and was used in the ActivityNet Challenge 2016, contains
19994 videos in 200 classes. In each version, the dataset is
divided into three disjoint subsets, training, validation, and
testing, by 2:1:1. The annotation for the testing subset is held
out by the test server, while the training and validation sub-
sets are publicly accessible. We train our model on the train-
ing set and evaluate it on the validation set except that the
model submitted to the test server is trained using both the
training and validation subset.

Following the conventions of the ActivityNet 2016 Chal-
lenge, we report mean average precision (mAP) at differ-
ent IoU thresholds 0.5,0.75,0.95 on both versions of Ac-
tivityNet dataset. The average of the mAP values (average
mAP) with IoU thresholds [0.5 : 0.05 : 0.95] is used to com-
pare the performance between different methods.

The THUMOS14 Dataset Jiang et al (2014) 2 has 1010
videos for validation and 1574 videos for testing. This dataset
does not provide the training set by itself. Instead, the UCF101
dataset Soomro et al (2012), a trimmed video dataset is ap-
pointed as the official training set. Following the standard
practice, we train out models on the validation set and evalu-
ate them on the testing set since the ground-truth of test data
is made available has been the competition. On these two
subsets, 220 and 212 videos have temporal annotations in 20
classes, respectively. 2 falsely annotated videos (“270”,“1496”)
in the test set are excluded in evaluation.

Following the conventions of the THUMOS Challenge
2014, we report mean average precision (mAP) at IoU thresh-
olds ranging from 0.1 to 0.5 with a step of 0.1. The mAP at
IoU of 0.5 is used for comparing results between different
methods.

In the following experiments, we compare our method
with the states of the art on both THUMOS14 and Activi-
tyNet v1.3, and perform ablation studies on ActivityNet v1.2.

1 http://activity-net.org/index.html
2 http://crcv.ucf.edu/THUMOS14/
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6.2 Implementation Details

We train the structured segment network in an end-to-end
manner, with raw video frames and action proposals as the
input. Two-stream CNNs Simonyan and Zisserman (2014)
are used for feature extraction: the spatial and temporal streams
are used to harness both the appearance and motion features.
To generate the inputs to the temporal stream, we adopt the
TV-L1 optical flow algorithm Zach et al (2007) which is im-
plemented in OpenCV with CUDA. The x-axis and y-axis
components are then linearly rescaled to a range of 0-255
and compressed into a grey-scale image using JPEG respec-
tively.

The binary actionness classifiers underlying the TAG pro-
posals are trained with TSN Wang et al (2016b) on the train-
ing subset of each dataset. In the stage of classification for
proposal, the activity and completeness classifiers are trained
likewise. We use SGD to learn CNN parameters in our frame-
work, with batch size 128 and momentum 0.9. We initial-
ize the CNNs with pre-trained models from ImageNet Deng
et al (2009). The initial learning rates are set to 0.001 for
RGB networks and 0.005 for optical flow networks. In each
minibatch, we keep the ratio of three types of proposals,
namely positive, background, and incomplete, to be 1:1:6.
For the completeness classifiers, only the samples with loss
values ranked in the first 1/6 of a minibatch are used for
calculating gradients, which resembles online hard negative
mining Shrivastava et al (2016). On both versions of Ac-
tivityNet, the RGB and optical flow branches of the two-
stream CNN are respectively trained for 9.5K and 20K it-
erations, with learning rates scaled down by 0.1 after every
4K and 8K iterations, respectively. On THUMOS14, these
two branches are respectively trained for 1K and 6K itera-
tions, with learning rates scaled down by 0.1 per 400 and
2500 iterations. For the temporal stream, gradient over 20
will be clipped to ensure convergence especially at the be-
ginning of the training, since the optical flow extracted from
untrimmed videos contains more noise than that extracted
from trimmed videos.

7 Experimental Results on Temporal Action Proposals

In this section, we analyze the performance of our proposed
action proposal method via actionness grouping. The qual-
ity of temporal action proposals is assessed by the metrics
from Hosang et al (2016) following the previous practice
in Escorcia et al (2016). Specifically, we calculate Average
Recall (AR) at IoU thresholds ranging from 0.5 to 1 with a
step of 0.05, given a certain number of proposals. Different
from object detection proposals in 2D dimension, the tem-
poral action proposals only vary in temporal dimension. A
proposal at IOU threshold of 0.5 may not be precise enough

Table 1 Evaluation of different grouping parameters for TAG on Ac-
tivityNet v1.2. “AR” refers to the average recall rates.

AR τ
(# of proposals) 0.1:0.2:0.9 0.05:0.1:0.95 0.05:0.05:0.95

γ
0.1:0.2:0.9 58.9 (22) 63.9 (45) 66.5 (80)
0.1:0.1:0.9 60.6 (24) 65.2 (50) 67.8 (85)

0.1:0.05:0.9 61.8 (26) 66.3 (52) 68.7 (89)

for localization. Therefore, we also measure the recall rate
at different IOU with N proposals, denoted by Recall@N.

We mainly focus on three aspects, i.e. (1) the perfor-
mance of our approach with various grouping parameters,
(2) the quality of temporal action proposals compared with
other methods, and (3) the ability to generalize to unseen
action classes. As of applying the generated proposals to
the framework of temporal action detection, we leave it to
Sec. 8.

Evaluation of Grouping Parameters. The proposal genera-
tion includes two sets of hyper-parameters, i.e., the action-
ness thresholds γ and tolerance thresholds τ . We vary the
sampling step of γ and τ from 0.05 to 0.1 and 0.2 and obtain
the results in Table 1. We find TAG to be robust to such vari-
ations and achieves reasonable average recall rate (∼ 58.9%)
with an amount of proposals as small as 22 on average.

Comparison with Other Proposal Approaches. We compare
our TAG scheme on ActivityNet v1.2 with common slid-
ing windows as well as other state-of-the-art proposal meth-
ods, including SCNN-prop, a proposal networks presented
in Shou et al (2016), Sparse-prop Caba Heilbron et al (2016),
DAP Escorcia et al (2016). For the sliding window scheme,
we use 20 exponential scales starting from 0.3 second long
and step sizes of 0.4 times of window lengths.

We first evaluate the average recall rates, which are sum-
marized in Table 2. We can see that TAG proposal have
higher recall rates with the same number of proposals. Then
we investigate the quality of its proposals by plotting the re-
call rates from different proposal methods at different IoU
thresholds in Fig. 5. We can see TAG retains relatively high
recall at high IoU thresholds, demonstrating that the propos-
als from TAG are generally more accurate.

On the THUMOS14 dataset, we compare our TAG scheme
with more recent proposal methods, including Sparse-prop Caba Heil-
bron et al (2016), BoFrag Mettes et al (2015), SCNN-prop Shou
et al (2016), DAP Escorcia et al (2016), and SST Buch et al
(2017). A representative spatio-temporal proposal method,
APT Van Gemert et al (2015) is also included by simply
projecting spatio-temporal proposals to the temporal only.
The results are illustrated in Fig. 6. From the AR curve, our
TAG method outperforms other methods by a large margin.
In terms of average recall computed over a higher temporal



10 Yue Zhao et al.

Fig. 5 Comparison of the TAG proposal with state-of-the-art proposal generation methods. The results are reported on the ActivityNet v1.2. (left)
TAG achieves higher average recall with same amount of proposals. TAG* denotes the model that is trained on THUMOS-14 and tested on the
whole ActivityNet v1.2, i.e. the ActivityNet line or the shared categories of both datasets i.e. the ActivityNet∩THUMOS-14 line. (right) Recall rate
at different tIoU thresholds with around 100 proposals. High recall rates at high IoU thresholds (> 0.7) indicate better proposal quality.

Table 2 Comparison between different temporal action proposal methods with same number of proposals. “AR” refers to the average recall rates.
“-” indicates the result is not available.

Proposal Method THUMOS14 ActivityNet v1.2
# Prop. AR # Prop. AR

Sliding Windows 204 21.2 100 34.8
SCNN-prop Shou et al (2016) 200 20.0 - -

TAP Caba Heilbron et al (2016) 200 23.0 90 14.9
DAP Escorcia et al (2016) 200 37.0 100 12.1

TAG 200 48.9 100 71.7

IOU range (0.7-0.95), the performance is more visible. From
the Recall@1000 curve shown in the lower part of Fig. 6, we
can clearly see that TAG achieves competitive results against
other methods at lower tIOU thresholds (0-0.5) and notable
performance gain at higher tIOU thresholds (0.8-0.95). The
largest improvement achieved at tIOU = 0.8 reaches nearly
20%, verifying the preciseness of our temporal action pro-
posals.

Generalization Ability to Unseen Action Classes. The ac-
tionness can be seen as a generic measurement to a wide
variety of activities. To verify it, we test the generalization
ability of the actionness classifier by applying the action-
ness classifier trained on ActivityNet v1.2 directly on THU-
MOS14 and ActivityNet v1.3. We can still achieve a reason-
able average recall of 39.6%, while the one trained specif-
ically on THUMOS14 achieves 48.9% in Table 2. To have
a better understanding, we compare the average recall on
overlapped classes, i.e. those seen in ActivityNet v1.2 and
unseen ones in Table 3. We see that in general the AR val-
ues do not severely decrease when the actionness classifier
is used to propose candidates for unseen classes. In partic-

ular, on the overlapped part of THUMOS14 dataset3, TAG
trained from ActivityNet v1.2 only drops a little (48.9% to
46.6%) compared to that both trained and evaluated on THU-
MOS14. The recall across the remaining 10 unseen classes
decreases more but is also competitive with previous meth-
ods which see all action classes. For ActivityNet v1.3, the
difference between the two parts (68.1% vs. 66.4%) is smaller
probably because ActivityNet v1.3 shares similar action types
and data distribution with its subset.

Previous works Escorcia et al (2016) also test the gener-
alization ability of proposal generation by training on THU-
MOS14 and testing on ActivityNet v1.2. Hence, in Fig. 5,
we show the average recall curve of our method (denoted
by TAG* to show the difference) against DAP Escorcia et al
(2016) on two sets: ActivityNet (all 100 categories on v1.2)

3 To be specific, the 10 classes are: “Clean and Jerk”, “Hammer
Throw”, “High jump”, “Javelin Throw”, “Long Jump”, “Pole Vault”,
“Shotput”, “Tennis Swing”, “Throw Discus”, “Volleyball Spiking”.
Note that THUMOS14 has two classes named “Cricket Bowling” and
“Cricket Shot” while ActivityNet v1.2 also has one called “Cricket”.
However we categorize the two classes into the unseen part since the
single label in ActivityNet is unable to distinguish these two specific
actions.
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Fig. 6 Comparison of the TAG proposal with state-of-the-art proposal generation methods. The results are reported on the THUMOS14. (upper
left) TAG achieves higher average recall with same amount of proposals. (lower left) The performance gain is larger when the average recall is
computed over a higher temporal IOU (0.7-0.95). (lower left) Recall rate at different tIoU thresholds with around 1000 proposals. (lower right)
Recall rate at higher tIoU thresholds (0.5-1.0) with around 1000 proposals.

Table 3 The comparison of average recall on overlapped classes and
unseen ones of THUMOS14 and ActivityNet v1.3 using an actionness
classifier trained on ActivityNet v1.2 only.

THUMOS14 ActivityNet v1.3
Overlapped Unseen Overlapped Unseen
(10 classes) (10 classes) (100 classes) (100 classes)

AR 46.6 28.3 68.1 66.4

and ActivityNet∩THUMOS-14 (on categories shared by both
datasets). Compared with TAG trained on ActivityNet v1.2,
we can observe that TAG* trained on THUMOS14 only in-
curs a slight drop of performance on both the whole and
overlapped dataset. The gap is closer as the average number
of proposals increases. This show the generalization ability
of the proposed TAG method.

8 Experimental Results on Temporal Action Detection

In this section, we report the performance of our method on
the datasets stated in Sec. 6. First, we investigate the impact
of different components in the framework via a set of abla-
tion studies. Then we compare the performance of SSN with
winning entries in the challenge as well as other state-of-
the-art approaches. Finally, some qualitative results on both
datasets are presented for visualization.

8.1 Ablation Studies

Temporal Action Proposals. We evaluate the performance
of action detection using different proposal methods. The
detection mAP values using sliding window proposals and
TAG proposals are shown in Table 5. The results confirm
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Table 4 Comparison between different temporal pooling settings. The
setting (1,2)-1 is used in the SSN framework. Please refer to Sec. 8.1
for the definition of these settings.

Average mAP (%) (1)-0 (1,2)-0 (1)-1 (1,2)-1
Max Pool 13.1 13.5 18.3 18.4

Average Pool 4.48 4.34 24.3 24.6

that, in most cases, the improved proposals can result in im-
proved detection performance.

Structured Temporal Pyramid Pooling. Here we study the
influence of different pooling strategies in STPP. We de-
note one pooling configuration as (B1, . . . ,BK)−A, where K
refers to the number of pyramid levels for the course stage
and B1, . . . ,BK the number of regions in each level. A = 1
indicates we use augmented proposal and model the starting
and ending stage, while A= 0 indicates we only use the orig-
inal proposal (without augmentation). Additionally we com-
pare two within-region pooling methods: average and max
pooling. The results are summarized in Table 4. Note that
these configurations are evaluated in the stage-wise train-
ing scenario. We observe that cases where A = 0 have infe-
rior performance, showing that the introduction of the stage
structure is very important for accurate detection. Also, in-
creasing the depth of the pyramids for the course stage can
give slight performance gain. Based on these results, we fix
the configuration to (1,2)−1 in later experiments.

Classifier Design. In this work, we introduced the activity
and completeness classifiers which work together to clas-
sify the proposal. We verify the importance of this decom-
posed design by studying another design that replaces it with
a single set of classifiers, for which both background and
incomplete samples are uniformly treated as negative. We
perform similar negative sample mining for this setting. The
results are summarized in Table 5. We observe that using
only one classifier to distinguish positive samples from both
background and incomplete would lead to worse result even
with negative mining, where mAP decreased from 23.7% to
17.9%. We attribute this performance gain to the different
natures of the two negative proposal types, which require
different classifiers to handle.

Location Regression & Multi-Task Learning. Because of the
contextual information contained in the starting and ending
stages of the global region features, we are able to perform
location regression. We measure the contribution of this step
to the detection performance in Table 5. From the results we
can see that the location regression and multi-task learning,
where we train the classifiers and the regressors together in
an end-to-end manner, always improve the detection accu-
racy.

Table 5 Ablation study on ActivityNet Caba Heilbron et al (2015)
v1.2. Overall, end-to-end training is compared against stage wise train-
ing. We evaluate the performance using both sliding window propos-
als (“SW”) and TAG proposals (“TAG”), measured by mean average
precision (mAP). Here, “STPP” refers to structure temporal pyramid
pooling. “Act. + Comp.” refers to the use of two classifiers design.
“Loc. Reg” denotes the use the location regression.

Stage-Wise End-to-End
STPP 󰃀 󰃀 󰃀 󰃀 󰃀

Act. + Comp. 󰃀 󰃀 󰃀 󰃀
Loc. Reg. 󰃀 󰃀

SW 0.56 5.99 16.4 18.1 - -
TAG 4.82 17.9 24.6 24.9 24.8 25.9

Training: Stage-wise v.s. End-to-end. While the structured
segment network is designed for end-to-end training, it is
also possible to first densely extract features and train the
classifiers and regressors with SVM and ridge regression,
respectively. We refer to this training scheme as stage-wise
training. The linear SVM for the stage-wise training are from
the implementation provided by scikit-learn Pedregosa et al
(2011). We compare the performance of end-to-end training
and stage-wise training in Table 5. We observe that mod-
els from end-to-end training can slightly outperform those
learned with stage-wise training under the same settings.
This is remarkable as we are only sparsely sampling snippets
in end-to-end training, which also demonstrates the impor-
tance of jointly optimizing the classifiers and feature extrac-
tors and justifies our framework design. Besides, end-to-end
training has another major advantage that it does not need to
store the extracted features for the training set, which could
become quite storage intensive as training data grows.

Pre-training on large-scale video dataset. The Kinetics Hu-
man Action Video dataset Carreira and Zisserman (2017)
contains 300,000 10-second-long video clips in 400 classes
collected from YouTube. It was shown in Carreira and Zis-
serman (2017) that deep models pre-trained on this dataset
can bring considerable improvement on smaller-scale datasets
such as UCF-101 Soomro et al (2012) in the action recog-
nition task. Here, we investigate whether models pre-trained
on this dataset for the purpose of action recognition can be
adapted to the domain of temporal action detection.

We choose the base model to be a BN-Inception net-
work Ioffe and Szegedy (2015) as well as an Inception-V3
network Szegedy et al (2016) initialized with parameters
learned from ImageNet Deng et al (2009) and then trained
with TSN Wang et al (2017b) on Kinetics Carreira and Zis-
serman (2017). The results are shown in Table 6. It is ob-
served that models pre-trained from Kinetics Carreira and
Zisserman (2017) show considerable improvement over those
pre-trained from ImageNet Deng et al (2009) only. This in-
dicates that large-scale video datasets, such as Kinetics Car-
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Table 6 Comparison of performance of pre-training on the Kinetics
dataset. The results are reported on the ActivityNet v1.2 val set.

Base model Pre-train Average mAP

BN-Inception ImageNet 26.8%
ImageNet + Kinetics 28.6%

Inception-V3 ImageNet 27.4%
ImageNet + Kinetics 29.4%

Table 7 Comparison of using original SSN and unified SSN (U-SSN).
The results are reported on ActivityNet v1.3 val set using ResNet-
101 He et al (2016) as the underlying architecture.

method average mAP
SSN 29.2%

U-SSN 28.0%
SSN + U-SSN 29.7%

reira and Zisserman (2017), serve as a better source for tem-
poral action detection compared to image datasets.

Unifying Activity and Completeness Classifiers In previous
discussion, we find that simply combining activity and com-
pleteness classifiers into a single classifier drastically re-
duces performance (from 24.6% to 17.9% using TAG pro-
posals). To remedy such loss of performance, we apply the
following practices. First, the parameter is initialized with
the model pre-trained on Kinetics Carreira and Zisserman
(2017) to ease training. Second, a fully-connected layer is
inserted between the STPP module and the activity classi-
fier for dimension reduction. No performance gain is ob-
served as we increase the number of fc layers. What’s more,
OHEM Shrivastava et al (2016)-like operation of updating
losses is applied amongst all types of proposals i.e., positive,
incomplete and background proposals. Here we present the
results of the unified SSN in Table 7. We summarize the fol-
lowing observations: First, the gap between the original SSN
and the unified SSN is greatly narrowed down with the mod-
ifications stated above; Second, the detection results of SSN
and U-SSN can be fused by simply averaging the detection
scores and surpass either single model.

8.2 Comparison with the State of the Art

Finally, we compare our method with other state-of-the-art
temporal action detection methods on THUMOS14 Jiang
et al (2014) and ActivityNet v1.3 Caba Heilbron et al (2015),
and report the performances using the metrics described above.
Note that the average action duration in THUMOS14 and
ActivityNet are 4 and 50 seconds. And the average video
duration are 233 and 114 seconds, respectively. This reflects
the distinct natures of these datasets in terms of the granular-
ities and temporal structures of the action instances. Hence,

strong adaptivity is required to perform consistently well on
both datasets.

THUMOS14. On THUMOS14, we compare with the con-
test results Wang et al (2014a); Oneata et al (2014); Richard
and Gall (2016) and those from recent works, including the
methods that use segment-based 3D CNN Shou et al (2016),
score pyramids Yuan et al (2016), recurrent reinforcement
learning Yeung et al (2016), convolutional-de-convolutional
(CDC) network Shou et al (2017) and region-based C3D Xu
et al (2017). The results are shown in Table 8. In most cases,
the proposed method outperforms previous state-of-the-art
methods by over 10% in absolute mAP values. By pre-training
on the Kinetics dataset, consistent improvements can further
be observed.

ActivityNet. The results on the validation and testing set of
ActivityNet v1.3 are shown in Table 9 and Table 10. For
references, we list the performances of highest ranked en-
tries in the ActivityNet 2016 challenge4 as well as the re-
sults reported in recent papers such as Convolutional-De-
Convolutional Networks(CDC) Shou et al (2017), R-C3D Xu
et al (2017), and temporal context network Dai et al (2017).
We submit our results to the test server of ActivityNet v1.3
and report the detection performance on the testing set. The
proposed framework, using a single model with Inception-
V3 Szegedy et al (2016) as the backbone network, is able
to achieve an average mAP of 28.28% and performs well at
high IOU thresholds, i.e., 0.75 and 0.95. This clearly demon-
strates the superiority of our method. By fine-tuning the model
pre-trained on the Kinetics dataset, the single model with
BN-Inception Ioffe and Szegedy (2015) as the backbone net-
work can further increase the average mAP to 29.34%, which
is a remarkable improvement due to smaller model complex-
ity. In the final submission, which composes an ensemble of
SSN and U-SSN with multiple backbone networks, the de-
tection average mAP reaches 31.86%.

8.3 Visualization and Analysis of Detection Results

We visualize some detection results obtained on the vali-
dation set of ActivityNet v1.2 dataset and the testing set
of THUMOS’14 dataset in Fig. 9 and Fig. 10, respectively.
The qualitative results validate that our methods can produce
temporal bounding boxes with high accuracy. It is also inter-
esting to see that the temporal extents of action instances in
the two datasets differ a lot and our framework is capable of
detecting actions of different durations.

4 The ActivityNet 2016 challenge summary is provided here:
http://activity-net.org/challenges/2016/data/anet_

challenge_summary.pdf

http://activity-net.org/challenges/2016/data/anet_challenge_summary.pdf
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Table 8 Action detection results on THUMOS14, measured by mAP at different IoU thresholds α . The upper half of the table shows challenge
results back in 2014. “SSN∗” indicates metrics calculated in the PASCAL-VOC style used by ActivityNet Caba Heilbron et al (2015). “SSN†”
indicates metrics calculated originally used by THUMOS Challenge 14 Jiang et al (2014).

THUMOS14, mAP@α
Method 0.1 0.2 0.3 0.4 0.5

Wang et. al. Wang et al (2014a) 18.2 17.0 14.0 11.7 8.3
Oneata et. al. Oneata et al (2014) 36.6 33.6 27.0 20.8 14.4

Richard et. al. Richard and Gall (2016) 39.7 35.7 30.0 23.2 15.2
S-CNN Shou et al (2016) 47.7 43.5 36.3 28.7 19.0

Yeung et. al. Yeung et al (2016) 48.9 44.0 36.0 26.4 17.1
Yuan et. al. Yuan et al (2016) 51.4 42.6 33.6 26.1 18.8

CDC Shou et al (2017) - - 40.1 29.4 23.3
R-C3D Xu et al (2017) 54.5 51.5 44.8 35.6 28.9

SSN† (ImageNet) Zhao et al (2017) 60.3 56.2 50.6 40.8 29.1
SSN∗ (ImageNet) Zhao et al (2017) 66.0 59.4 51.9 41.0 29.8

SSN† (ImageNet+Kinetics) 62.2 58.7 53.3 44.5 33.3
SSN∗ (ImageNet+Kinetics) 69.3 63.6 55.2 44.8 34.3

Table 9 Action detection results on ActivityNet v1.3 validation set, measured by mean average precision (mAP) for different IoU thresholds α
and the average mAP of IoU thresholds from 0.5 to 0.95. The upper half of the table shows challenge results in 2016, mostly reported in the
challenge summary.

ActivityNet v1.3 (validation), mAP@α
Method 0.5 0.75 0.95 Average

Wang et. al. Wang and Tao (2016) 43.65 - - -
Montes et. al. Montes et al (2016) 22.51 - - -

Singh et. al. Singh and Cuzzolin (2016) 34.47 - - -
R-C3D Xu et al (2017) 26.8 - - -
TCN Dai et al (2017) 36.17 21.12 3.89 -

CDC Shou et al (2017) 45.3 26.0 0.2 23.8
SSN (ImageNet+Kinetics) 45.88 28.56 6.39 28.85

Table 10 Action detection results on ActivityNet v1.3 testing dataset, measured by mean average precision (mAP) for different IoU thresholds α
and the average mAP of IoU thresholds from 0.5 to 0.95. The upper half of the table shows challenge results in 2016.

ActivityNet v1.3 (testing), mAP@α
Method 0.5 0.75 0.95 Average

Wang et. al. Wang and Tao (2016) 42.48 2.88 0.06 14.62
Montes et. al. Montes et al (2016) 22.37 14.88 4.45 14.81

Singh et. al. Singh et al (2016) 28.67 17.78 2.88 17.68
Singh et. al. Singh and Cuzzolin (2016) 36.40 11.05 0.14 17.83

R-C3D Xu et al (2017) 28.4 - - -
TCN Dai et al (2017) 37.49 23.47 4.47 23.58

CDC Shou et al (2017) 43.0 25.7 0.2 22.9
SSN (ImageNet) Zhao et al (2017) 43.26 28.70 5.63 28.28

SSN (ImageNet+Kinetics), single model - - - 29.34
SSN + U-SSN (ImageNet+Kinetics), ensemble - - - 31.86

It may be of interest for readers to see the performance
on individual classes. Hence, we first plot the per-class aver-
age AP of SSN on the ActivityNet v1.2 val set in Fig. 7.
For comparison, detection results produced by SSN with
proposals generated from a sliding window (486 proposals,
AR=71%) and a TAG (100 proposals per video, AR=67%)

method are listed in parallel, showing that TAG-SSN achieves
a higher average AP on most of the classes.

We also plot the top 10 action classes that are easiest and
hardest to detect in Fig. 8. We see that the framework can do
fairly well on actions which last long and have distinguish-
able appearance. Different types of dancing, i.e. zumba, tango,
belly dance, and cumbia, are typical examples. For those ac-
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tions which are inconspicuous (for example, drinking cof-
fee/beer), the proposed framework is still far from being sat-
isfactory. Another characterization is that action instances
in these poor performing classes have a short duration. The
shorter the action instance is, the less likely it will be pre-
cisely detected in terms of a high tIOU. This may be alle-
viated by proposals with more granularities and predictions
with higher temporal resolutions. Last but not least, it has
to be pointed out that there are certain action pairs that are
likely to confuse, for example, “drinking coffee”-“drinking
beer”, “long jump”-“triple jump”, and “bungee jumping”-
“platform diving”. The confusion of these pairs are under-
standable to a large extent since they share similar overall
appearance. Such issue also occurs in the field of action
recognition, which motivates us to design a better model for
recognizing these confusing actions.

9 Conclusion

In this paper, we present a generic framework for tempo-
ral action detection, which combines a structured temporal
pyramid with two types of classifiers, respectively for pre-
dicting activity class and completeness. In addition, a simple
yet effective temporal action proposal method is invented
to generate action proposals with high quality at a small
amount in a bottom-up manner.

With this framework, we achieve significant performance
gain over state-of-the-art methods on both ActivityNet and
THUMOS14. Moreover, we demonstrated that our method
is both accurate and generic, being able to localize temporal
boundaries precisely and working well for activity classes
with very different temporal structures.
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Fig. 9 Examples of detection results on the ActivityNet v1.2 validation set. In each group, the video is shown as sequences of frames on top.
The upper bar in each group with blue boxes denotes the annotated ground-truth instances, whose sampled frames are also illustrated at bottom.
The detection results from SSN are shown in the lower bar, filled with different colors. A green box denotes a correct detection on condition that
IoU ≥ 0.5. Other colors, namely red and yellow, denote the cases of bad localization (IoU < 0.5) and multiple detection, respectively.
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Fig. 10 Examples of detection results on the THUMOS14 testing set. In each group, the video is shown as sequences of frames on top. The upper
bar in each group with blue boxes denotes the annotated ground-truth instances, whose sampled frames are also illustrated at bottom. The detection
results from SSN are shown in the lower bar, where a green box denotes a correct detection on condition that IoU ≥ 0.1. Note that the durations of
action instances in THUMOS14 are much different from those in ActivityNet.


