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Abstract

A considerable portion of web images capture events that
occur in our personal lives or social activities. In this pa-
per, we aim to develop an effective method for recogniz-
ing events from such images. Despite the sheer amount of
study on event recognition, most existing methods rely on
videos and are not directly applicable to this task. Gen-
erally, events are complex phenomena that involve interac-
tions among people and objects, and therefore analysis of
event photos requires techniques that can go beyond rec-
ognizing individual objects and carry out joint reasoning
based on evidences of multiple aspects. Inspired by the re-
cent success of deep learning, we formulate a multi-layer
framework to tackle this problem, which takes into account
both visual appearance and the interactions among humans
and objects, and combines them via semantic fusion. An
important issue arising here is that humans and objects dis-
covered by detectors are in the form of bounding boxes, and
there is no straightforward way to represent their interac-
tions and incorporate them with a deep network. We ad-
dress this using a novel strategy that projects the detected
instances onto multi-scale spatial maps. On a large dataset
with 60, 000 images, the proposed method achieved sub-
stantial improvement over the state-of-the-art, raising the
accuracy of event recognition by over 10%.

1. Introduction
The explosive growth of web images, driven primarily by

the thriving of online photo sharing services such as Flickr

and Instagram, has been gradually and profoundly trans-

forming our lives and the way we communicate. Many of

these images are event photos, namely the ones that capture

human activities in either private or social contexts. Such

images not only provide valuable records of our lives and

our world, but also convey useful information that one can

exploit to analyze consumer preferences or study socioeco-

nomic trends. The primary goal of this paper is to develop

Figure 1: Event recognition is highly challenging due to the

large semantic gap. Even in the same event class, Parade,

the images can look very different. This calls for methods

that are capable of reasoning about high-level semantics by

fusing evidences of multiple aspects.

an effective method for recognizing events from images.

Event recognition is not a new story in computer vision.

However, most existing efforts [1, 5, 32] are devoted to rec-

ognizing events from videos. This is not surprising, as it

is a common conception that dynamics play a critical role

in defining an event. Do we really need videos for event
recognition? Our experience seems to suggest otherwise –

people can effortlessly identify events from photos most of

the time. This motivates us to explore a new approach, one

that is able to recognize events from static images.

This is a challenging problem. A major obstacle standing

in our way is the large gap between high-level event seman-

tics and low-level visual features. Event images are com-

plex as compared to object images. They usually involve

multiple objects interacting with each other. As we can see
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in Figure 1, two images capturing the same kind of events

can be vastly different in their visual structures. Traditional

methods that rely mainly on shallow analysis of visual ap-

pearance would be faced with substantial difficulties when

applied to this task.

Recently, the use of convolutional neural networks

(CNN) has led to remarkable progress in several important

vision tasks, including image classification [12], object de-

tection [7], and face verification [31]. This line of work

clearly demonstrates the superior capability of deep models

in capturing complex variations and the critical role of in-

termediate layers in bridging the semantic gap. Following

the lead of these efforts, we explore the use of deep learn-

ing in this work, with an aim to bring its success to the next

level – from recognizing individual objects to understand-

ing complex images as a whole.

Events, by nature, are defined by the interactions among

key entities, including humans and objects. Therefore, iden-

tifying such entities in an image is a key step towards event

understanding. While a convolutional network formulated

upon entire images is very powerful in modelling visual ap-

pearance, we found empirically that it is not as effective as

an dedicated detector, especially in detecting humans. Our

idea to tackle this problem is very simple – use dedicated

detectors to locate relevant entities and incorporate them

with the convolutional network to predict the event class.

However, bounding boxes of detected objects and vi-

sual appearance features are very different by nature, and

can not be combined using conventional feature combina-

tion methods. In this paper, we propose a novel way to ad-

dress this. Instead of directly using the bounding boxes, we

project them onto multi-scale spatial maps, bring the resul-

tant maps together, and thereon construct a convolutional

network to derive a higher-level representation. This con-

struction not only provides a way to express detecting re-

sults that is suited for higher-level analysis, but also makes

it possible to exploit the spatial co-occurrences of differ-

ent objects, which are important cues of their interactions.

With two convolutional networks, one upon the image and

the other upon the detection maps, we integrate them via

semantic fusion and obtain a fused representation that cap-

tures key semantic elements of the event image.

The major contributions of this work are summarized

here: (1) We explore a new approach to event recognition,

which, unlike most previous methods, rely solely on static

images. (2) Recognizing that interactions among people

and objects are essential for event understanding, we pro-

pose using dedicated detectors to locate key entities, and

develop a novel strategy, namely multi-scale spatial maps,

to uniformly represent the detected results. (3) We propose

a new framework that combines evidences from multiple

channels via semantic fusion. (4) To facilitate this study and

to promote future efforts towards image-based event recog-

nition, we construct a large dataset comprised of nearly

60, 000 images annotated with event classes. The dataset

can be found in the project website listed in the supplemen-

tary materials.

The rest of the paper is organized as follows. Section 2

provides a brief review of related work. Section 3 in-

troduces a new dataset for image-based event recognition,

called WIDER. Section 4 discusses the proposed framework

in detail. Section 5 presents the experimental results. Fi-

nally, we conclude this paper in Section 6.

2. Related Work
Event recognition is a very active area in computer vi-

sion [39]. Most existing methods rely on videos to recog-

nize events [4], with emphasis placed on the use of dynam-

ics and temporal relations [1, 32]. These methods generally

fall in three categories: feature-based [4, 27, 34], concept-
based [35], and model-based [9, 37]. Recently, Duan et al.
proposed a new method [5] that utilizes web images to help

video-based event recognition. Despite the technical differ-

ences among these methodologies, they all rely heavily on

using the dynamics extracted from videos and therefore can

not be directly applied to static images.

Understanding of still images is an active field of re-

search. Efforts on holistic scene understanding [26] are

also related to this work, as they both target high-level inter-

pretations of given images. Yet, essential differences exist.

Prior work on scene understanding mainly considers visual

patterns, with relatively less attention to human activities,

which, however, are a key factor in event analysis. In this

paper, we take into account this factor through a dedicated

channel and derive a novel way, namely multi-scale maps,

to incorporate it.

Analyzing human actions [10] with the help of human

poses [21, 38] and human-object interactions [2, 40] also

provides significant cues in recognizing certain categories

of events. However it is worth to note that the events we in-

vestigate here are usually characterized by combinations of

multiple aspects, including background appearance, spatial

patterns of people, and their interactions. Hence this work

is related but different from recognizing actions of individ-

uals.

Among previous work on image understanding, a CRF-

based method proposed by Li and Fei-fei [15] that jointly

infers the classes of event, scene, and objects is perhaps the

most related. This method couples two LDA models formu-

lated directly upon low-level features, and therefore lacks

the capability of capturing complex variations and bridging

the semantic gap. It is also worth noting that many previous

methods [16] require training sets with detailed annotations

(e.g. object bounding boxes), which are often very costly

to obtain. On the contrary, our method only needs training

images labeled with event classes, making it particularly ap-



Figure 2: Examples of several categories in the WIDER dataset, which exhibit diverse visual patterns.

pealing to large-scale applications.

A key strategy adopted in this work is to combine in-

formation from multiple channels. This strategy has been

widely used in previous work. In conventional frameworks,

the fusion of channels is usually accomplished by combin-

ing features [18] or optimization objectives [19]. A limi-

tation of these approaches is that they are not able to ex-

ploit the relations among the constituent elements of differ-

ent channels. Following the recent success of deep mod-

els [6, 12, 20], attempts [23, 30] have been made to connect

multiple modalities through deep networks. In recent work,

auxiliary channels, such as depth [8] and optical flow [29],

are captured using additional networks. It is worth empha-

sizing that depth maps or optical flows are both spatial maps

by nature and thus it is relatively easy to construct CNNs

thereon. However, incorporating external detectors that pro-

duce bounding boxes is not as straightforward. In this work,

we develop a novel method, namely the multi-scale maps,

which provides a principled solution to this problem. This

method enables us to directly draw on state-of-the-art de-

tectors [3, 7, 14] for improving the overall recognition per-

formance.

3. WIDER: A New Dataset
Datasets are an important force in driving the advance-

ment in a research area. Whereas there have been plenty

of datasets for object recognition [28], scene understand-

ing [36], and video-based event recognition [25]. A dataset

to support the research on image-based recognition remains

needed. Along with this work, we constructed a large

dataset from web images, called Web Image Dataset for
Event Recognition (WIDER). This dataset contains 60, 000
images of 60 event classes, where the numbers of images in

different classes are balanced. All images have been care-

fully annotated with event labels, which can be used for

model training and performance evaluation. Figure 1 show

some examples of the data. We can see that the dataset

comprises a diverse set of event categories and there exist

substantial variations in visual patterns among the images

within each category. We will make the dataset available to

the public following the publication of this paper in order to

foster future research on this topic.

Construction of this dataset took a lot of efforts. This

course is comprised of three stages:

Selecting event categories. A majority of the event cat-

egories are from the Large Scale Ontology for Multimedia
(LSCOM) [22], which provides a list of around 1, 000 con-

cepts relevant to video event analysis. Many of these con-

cepts are the names of objects or low-level actions. Hence,

we manually go through the list, picking those representing

event classes while filtering out the others. We also noticed

that the concepts in LSCOM are primarily from TV news,

and consequently events in personal lives were not thor-

oughly covered. To enrich the dataset, we invited a group of

students to propose activities related to their daily lives and

find a number of new categories therefrom, e.g. car-driving.

Altogether, we obtained 60 event classes.

Collecting images. We resorted to search engines like

Google and Bing to collect images. Specifically, we re-

trieve 1000 to 3000 images for each category using the class

name as the input query. We found that many images re-

sulted from this process are simply irrelevant. To obtain

more qualified images, we adopt the query expansion strat-

egy. In particular, we acquire additional queries for each

event class by finding highly frequent phrases from a vari-

ety of sources, such as WordNet, Wikipedia, and the text

snippets that come with the retrieved images. Using these

phrases as queries to expand the search substantially enrich

the pool of candidate images for building the dataset.

Screening data. The collection process above results in

hundreds of thousands of candidate images. In this pool,

lots of samples are cartoons or cliparts while many others

are irrelevant to the events of interest. To clean the data,



we first filter out cartoons, cliparts, and blank images us-

ing bilateral filtering1. Then we asked human annotators to

identify irrelevant images in the remaining set. To expedite

this process, we developed a GUI tool, where the images are

grouped into pages and hence the annotator can inspect 80
images at the same time. In this way, we can process a large

quantity of images very quickly and reliably. The screening

retained about 60, 000 images in the dataset.

4. Framework: Fusing Multiple Channels
Generally, an event can be considered as an activity tak-

ing place in a certain environment. Hence, it can be rea-

soned from two aspects: (1) Environment: e.g. is it by the
seashore or in a forest? is there a large crowd of people?
(2) Activity: e.g. is the man running? are the people in the
scene sitting together? Event recognition, in essense, is a

process to answer such questions and arrive at a prediction

by bringing the answers together.

Following this consideration, we develop a multi-layer

framework as shown in Figure 3. This framework is com-

prised of two major channels, one is to model the observed

visual patterns, which are important for reasoning about the

environment; while the other is to capture the interactions

among humans and objects, which are significant cues of

the activity taking place. Particularly, to ensure the reliabil-

ity of detection, the latter channel employs state-of-the-art

detectors to locate the entities of interest (i.e. humans and

objects), and subsequently uses spatial maps to express the

distribution of the detected results. This enables the use of

deep models to capture the variations in their spatial con-

figurations. These two channels are combined through a se-

mantic fusing layer, resulting in a fused representation that

captures the key semantic elements of the image. In what

follows, we will introduce these components in detail.

4.1. Model Visual Appearance with CNN

We use a deep convolutional neural network (CNN) to

model the visual appearance of event images. In previous

work [12], CNNs have demonstrated excellent capability of

capturing complex variations in visual patterns. Here, we

are interested in studying how well they perform in higher-

level tasks, e.g. event recognition. Particularly, we adopt the

architecture of AlexNet presented in [12].

This network comprises eight layers, five convolutional

and three fully-connected, and takes as input a 3-channel

color image of size 224×224. The 1st, 2nd, and 5th convo-

lutional layers are each followed by a max-pooling layer to

compress the inputs. Each fully connected layer has 4096
neurons. The last layer is linked to a multi-way softmax

classifier with dense connections. The settings of these lay-

ers follow [12]. The detailed model specification will be

1The overall response of a bilateral filter can be used to test whether an

image has enough textures to be qualified as a real-world photo.

Figure 4: The face and human detectors are complementary.

In case one detector fails, the other tends to find out the

missed humans in image.

provided in the supplemental materials.

4.2. Find Humans with Complementary Detectors

We found empirically that humans appear in a majority

of images in our dataset. This is not surprising. The in-

teractions among humans are often a key factor in defining

an event. However, locating humans from event images is

very challenging. In such images, people are often occluded

by one another, and their facial appearance can be seriously

blurred when they are far away from the camera. There are

also cases where faces of some people are completely invis-

ible, as they are facing towards the opposite side. To tackle

this problem, we combine two complementary techniques:

face detection and human detection. As Figure 4 illustrates,

this strategy can substantially increase the chance of suc-

cessful detection even under adverse circumstances – when

one technique fails, the other can come to rescue.

Specifically, we use the SURF cascade presented in [14]

for face detection. This method uses multi-dimensional

SURF features for describing local patches together with an

improved weak classifier for boosting, thus significantly in-

creasing the run-time efficiency without compromising the

accuracy. For human detection, we employ the ACF de-

tector developed in [3], which uses a feature pyramid for

multi-scale detection with an approximation to speed up the

computation. Both detectors are highly efficient and thus

are suited for large-scale applications.
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Figure 3: Overall, this framework integrates two channels. The upper channel, devised to capture the visual appearance, is

formulated directly upon the input images; while the lower channel, devised to capture the interactions among humans and

objects, takes as input the results of three detectors, respectively for faces, humans, and objects. In this channel, the bounding

boxes obtained by the detectors are projected onto multi-scale spatial maps, which are then modeled by another CNN. On top

of both CNNs, a fused representation is introduced, which is linked to the top representations of both networks, respectively

via a fully-connected layer.

4.3. Multi-scale Spatial Maps

Detectors output bounding boxes. Each bounding box

is represented by a 4-tuple comprised of the corner coordi-

nates. These boxes contain rich information about the event,

which, for example, include the spatial distribution of enti-

ties and their geometric relations i.e. relative location and

size. However, a question arises here: how can CNNs un-
derstand the bounding boxes? This problem is not as trivial

as it seems to be. Simply concatenating the coordinates of

all bounding boxes does not yield a sensible representation.

Our idea to tackle this problem is simple. Since the pri-

mary message conveyed by these bounding boxes is the spa-

tial configuration of the entities, to get this message, we can

project the boxes onto a spatial map. Here, a spatial map is a

binary image with the elements covered by detected objects

set to one. However, there is an issue with this approach.

Consider the two images in Figure 5, one containing a group

of people, while the other containing two larger faces that

cover a similar region. While these images represent very

different events, one cannot distinguish them by inspecting

their spatial maps.

Here, we propose a solution – multi-scale spatial maps.

Instead of using a single channel to capture all detected

entities, we expand the map into multiple channels, each

for a scale level, so that entities of different scales will

be reflected by different channels. In particular, we use a

multi-scale spatial map comprised of three scale channels

to represent the detected faces, where each channel is a bi-

nary map of size 18 × 18. We use two scale thresholds

τ1 and τ2 with τ1 < τ2 to determine the choice of chan-

nels. Given a bounding box, we normalize its coordinates

w.r.t. the 18 × 18 frame and compute its area a. If a < τ1,

we project it to the 1st channel, setting all the covered ele-

ments of this channel to one. Otherwise, we project it to the

2nd or 3rd channel, depending on whether a < τ2 holds.

Likewise, we can apply this multi-scale representation to

express the results obtained from the human detector. Alto-

gether, we have a spatial map with 6 channels, 3 for faces

and the other 3 for human bodies. This method not only pro-

vides a uniform representation that can be readily handled

by higher level models, e.g. CNN, but also makes it possible

to differentiate the spatial configurations at different scales,

e.g. crowded gathering vs. private conversation.

4.4. Detect and Characterize Objects

Besides humans, the presence of objects of certain cat-

egories is often a strong indicator of some event classes.

Figure 6 uses several examples to illustrate this relation. In

this paper, we use R-CNN [7], a state-of-the-art technique

in object detection, to locate objects of interest.



Figure 5: Here is an illustration of multi-scale spatial maps.

Over these two images, the face detector produces bounding

boxes of different sizes. Spatial maps resulted from the pro-

jection of these boxes are difficult to be distinguished from

each other. However, when boxes of different sizes are pro-

jected onto different channels (L, M, and S), the distinction

between these maps becomes much more obvious.

Figure 6: Existence of significant objects indicates the event

categories. For example, the presence of horses and helmets

is a strong indicator to the class Jockey.

The R-CNN method consists of three steps. First, it re-

quires object candidates to be generated. For this purpose,

we use a latest technique, called Edge boxes [41], which is

much more efficient than the standard selective search al-

gorithm [33]. On average, Edge boxes takes 0.25 second

to process an image, while selective search takes about 10
seconds. Subsequently, a 4096-dimension CNN feature is

derived for each candidate, which is then fed to SVMs to

predict whether it belongs to specific object classes or not.

Finally, a greedy non-maximum suppression procedure is

applied to filter out redundant candidates.

We observed objects of thousands of different classes in

our dataset. Many of them, however, are irrelevant to event

understanding. To choose the ones that are truly pertinent to

our task, we run a large collection of object detectors over

a subset of event images, and select the 30 most frequently

occurring classes2.

Again, we use spatial maps to express detected objects.

Unlike humans, we have a number of object classes but the

presence of a specific object class is generally quite sparse.

Hence, we use class-specific maps instead of multi-scale
maps for general objects (except humans). In particular, we

construct a spatial map with 30 channels, each for an object

class. When an object is detected, the bounding box will be

projected onto the corresponding channel. This representa-

tion enables one to exploit the interactions among objects,

e.g. co-occurrences of objects of different categories.

4.5. Channel Fusion

Stacking the spatial maps for faces, humans, and ob-

jects, we obtain an integrated spatial map with 36 channels,

each of size 18× 18. We construct a convolutional network

thereon to derive a higher-level representation. Through a

series of empirical experiments, we obtain an architecture

suitable for modelling such spatial maps. This architecture

comprises two convolutional layers. The first layer filters

the inputs with 64 kernels, each of size 3× 3× 36, produc-

ing an output of size 18 × 18 × 64. This is followed by a

max-pooling layer that compresses the result into an array

of size 6×6×64. The second convolutional layer, with 128
kernels of size 1×1×64 is then applied, yielding an output

of size 6 × 6 × 128. Here, the first convolutional layer is

to exploit the spatial interactions among neighboring parts

and the co-occurrence patterns of different entities, while

the second layer is mainly to adjust the relative contribution

of different channels. The output of the second layer is then

linked to a representation layer via a fully-connected net-

work, resulting in a 4096-dimensional vector to capture the

information derived from the detectors. Note that the de-

tection channel needs less layers compared to the network

for visual appearance. This is partly due to the reason that

the detectors perform a series of visual analysis internally,

which already narrows the semantic gap to some extent.

2The number of object classes was determined using cross validation.

We found the risk of overfitting to be higher as we use more object classes.



Method Top-1 Accuracy Top-5 Accuracy

Gist [24] 13.8% 34.6%
SPM [13] 26.8% 47.2%
RCNNBank 37.7% 62.5%
CNN [12] 38.5% 65.5%
FCNN+H 42.1% 67.3%
FCNN+H+O 42.4% 67.5%

Table 1: Class averaged recognition accuracy.

(a) Top-1 Accuracy (b) Top-5 Accuracy

Figure 7: Average recognition accuracy by percentages.

The visual appearance channel and the detection channel

respectively yield a 4096-dimensional representation at the

top. Through the computation across multiple layers, these

representations are abstracted away from the low-level vari-

ations and thus are more consistent in expressing the se-

mantics. To integrate both aspects, we further introduce

a semantic fusion layer, which is linked to the top layers

of both channels via dense connections, and thereon de-

rive a 4096-dimensional fused representation. Like in other

discriminative networks, this fused representation will be

linked directly to the event classes via a softmax layer.

4.6. Training Algorithms
At the training stage, the CNN of the first channel was

pre-trained on ImageNet [12]. This relives the over-fitting

problem of deep models in the sense that natural images

share similar low-level features. For the CNN of the sec-

ond channel, the weights were randomly initialized from a

zero-mean normal distribution. After initialization, the en-

tire framework is jointly trained using stochastic gradient

descent. Training strategy like data augmentation, weight-

decay, and dropout are also used to alleviate over-fitting.

The learning rate is initialized at 0.001 for the pre-trained

CNN, while the learning rates of the two convolutional lay-

ers for the second channel are set to 5 and 2 times the base

rate.

5. Experimental Results
We conducted experiments on the WIDER dataset (de-

scribed in Section 3) to evaluate the proposed method and

compare it with representative methods on image classifica-

tion. The entire dataset, which contains 60, 000 images in

Interview
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Demonstration

Rescue

I t i

T iTrai ining

D t ti

R

Figure 8: Successful and failed prediction examples on

the testing set. Misclassified samples are shown with their

ground-truth categories.

60 classes, is randomly divided into two disjoint halves, one

for training and the other for testing.

We tested our method under two settings: “FCNN+H”
and “FCNN+H+O”. The former is a simplified version

where the detection channel only uses the results of face

& human detection, while the latter is the full version with

both humans and objects taken into account. We also

compared it with “Gist” [24], “Spatial Pyramid Matching
(SPM)” [13], “ObjectBank” [17], and “CNN” [12]. These

methods have been widely adopted in practical systems.

Note that when we implemented ObjectBank, we made an

important improvement, using the responses of R-CNN in-

stead of the original SVM detectors. This change, which we

call “RCNNBank”, leads to much better performance.

For all these methods, we learned the model on the train-

ing set and assessed them on the testing set. The perfor-

mance was evaluated in terms of top-1 and top-5 accuracies.

Specifically, each method was used to predict a ranked list

of class labels for each testing image based on classification

scores, which is then compared with the ground-truth. If the

ground-truth is within top k positions of the list, we call the

prediction top-k accurate. Then, top-k accuracy is defined

to be the fraction of top-k accurate predictions.

Comparison of results. The performance is compared in

Table 1 and Figure 7. The results show that methods us-

ing deep learning techniques outperform all others, i.e. Gist

and SPM, by a large margin. This, again, demonstrates the

superior capability of deep models in capturing complex vi-

sual variations as compared to traditional techniques. More

importantly, our framework, with the detection channel in-

corporated, takes this capability to a next level, significantly

improving the classification accuracies. Compared to CNN,

the top-1 accuracy increases from 0.385 to 0.424 – the gain

is over 10%. This result corroborates with our intuition that



Para. Hand. Demo Riot Daci. Acci. Fune. Chee. Elec. Pres. Marc. Meet. Grou. Inte. Traf. Stoc. awar. Cere. Conc. Coup.

CNN .389 .270 .641 .117 .217 .584 .242 .252 .042 .579 .169 .406 .274 .134 .494 .474 .200 .254 .207 .193
FCNN+H+O .425 .279 .617 .182 .257 .663 .315 .240 .124 .522 .328 .454 .258 .187 .529 .471 .306 .336 .316 .386

Fami. Fest. Picn. Shop. Firi. Patr. Dril. Spa Fans Stud. Surg. Wait. Labor Runn. Base. Bask. Foot. Socc. Tenn. IceS.

CNN .176 .246 .576 .306 .426 .385 .186 .588 .120 .132 .416 .584 .239 .582 .576 .556 .488 .533 .611 .493
FCNN+H+O .318 .254 .593 .336 .306 .492 .175 .603 .183 .132 .462 .543 .260 .480 .553 .592 .511 .570 .636 .584

Gymn. Swim. Race. Rowi. Aero. Ball. Jock. Bull. Para. Gree. Cele. Wear. Phot. Raid Resc. Trai. Voti. Fish. Hock. Driv.

CNN .667 .652 .764 .680 .420 .293 .195 .712 .372 .141 .319 .624 .246 .219 .237 .092 .158 .409 .527 .339
FCNN+H+O .641 .652 .767 .663 .389 .319 .214 .761 .417 .160 .370 .593 .290 .253 .300 .069 .124 .393 .580 .321

Table 2: Comparison of per class recognition accuracy. To save space, we only show abbreviations of category names here.

We compare the accuracy of FCNN with the original fine-tuned CNN on these categories. With the help of spatial detection

maps, accuracies on 40 out of 60 categories have been improved.

the detection channel conveys complementary information

and that the multi-scale maps provide an effective means to

utilize such information. Also, the use of face and human

detectors makes up for the weakness of appearance-based

CNN in object localization.

Table 2 offers class-specific comparisons. For 40 out of

60 classes, our method outperforms CNN [12]. For those

classes where humans play a crucial role, the gain is re-

markable. For example, the top-1 accuracies are nearly

doubled for classes like “Marching (Marc.)” and “Cou-
ple Photo(Coup.)”. Figure 8 presents some successful and

failed predictions of our model. Taking a closer look here,

we can see that this model is able to identify images relevant

to the same event in spite of the large variations in their vi-

sual appearance. On the other hand, many of the examples

that are incorrectly classified tend to be easily confused, as

the “true” classes and the predicted classes of these exam-

ples often look very similarly.

Contribution of object detection. Compared to the sig-

nificant improvement due to the use of face and human de-

tection, the performance gain brought by the object chan-

nels doesn’t seem to be as notable. When investigating this

issue, we found that non-human objects are only detected

in about one-fourth of the images. Particularly, out of all

the testing images, about 7100 contain detected non-human

objects. We specifically evaluated the performance on this

subset, and observed greater performance gain due to the

object channels, as shown in Table 3. We note that the

effectiveness of the object channels hinges largely on the

performance of the object detectors. While the R-CNN de-

tectors [7] already represent the state-of-the-art, the over-

all performance remains quite limited (with AP at 31.4%).

However, the computer vision community is making steady

progress in object detection [28]. It is reasonable to believe

that with better detectors, we can see even greater improve-

ment with the use of object channels.

Run-time performance. We implemented the framework

based on Caffe [11], a popular programming platform for

Method CNN FCNN+H FCNN+H+O

Top-1 Accuracy 45.56% 48.9% 49.6%
Top-5 Accuracy 71.4% 73.6% 75.3%

Table 3: Performance comparison on the “with-object” set.

deep learning. The training phase involves preprocessing

(detecting humans and objects) and parameter learning. A

majority of the computation is performed on GPU. With a

GTX Titan, it takes about 3 seconds on average to prepro-

cess an image, and 3 hours to train the deep networks over

the entire training set with about 30, 000 images. Given

a new image, it also takes about 3 seconds to preprocess.

Compared to preprocessing, the time needed to make the

prediction is negligible (about 2.4 milliseconds per image).

6. Conclusions and Future Work
We presented a new framework for recognizing complex

events from static images. This framework integrates ev-

idences from a visual appearance channel and a detection

channel, both via deep convolutional networks, to predict

the event class for a given image. It is particularly worth

noting that we use multi-scale spatial maps in expressing

the results obtained from dedicated detectors, thus enabling

the use of higher-level models, e.g. CNN, to capture the spa-

tial configurations of objects and their variations.

The experiments over a large dataset clearly demon-

strated the effectiveness of the proposed method. In partic-

ular, our method achieves notable improvements over state-

of-the-art visual recognition techniques, increasing the ac-

curacy by over 10%. Event recognition is a challenging

task. While we have taken one step forward here, there

remains much room for further improvement. We plan to

explore new aspects in our future work, which include at-

tributes of individuals, detailed characterization of interac-

tions, and even the context. We wish that this work along

with the WIDER dataset can promote the research on this

topic.
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