
Temporal Segment Networks: Towards Good
Practices for Deep Action Recognition

Limin Wang1, Yuanjun Xiong2, Zhe Wang3, Yu Qiao3, Dahua Lin2,
Xiaoou Tang2, and Luc Van Gool1

1Computer Vision Lab, ETH Zurich, Switzerland
2Department of Information Engineering, The Chinese University of Hong Kong

3Shenzhen Institutes of Advanced Technology, CAS, China

Abstract. Deep convolutional networks have achieved great success for
visual recognition in still images. However, for action recognition in
videos, the advantage over traditional methods is not so evident. This
paper aims to discover the principles to design effective ConvNet archi-
tectures for action recognition in videos and learn these models given
limited training samples. Our first contribution is temporal segment net-
work (TSN), a novel framework for video-based action recognition. which
is based on the idea of long-range temporal structure modeling. It com-
bines a sparse temporal sampling strategy and video-level supervision to
enable efficient and effective learning using the whole action video. The
other contribution is our study on a series of good practices in learning
ConvNets on video data with the help of temporal segment network.
Our approach obtains the state-the-of-art performance on the datasets
of HMDB51 (69.4%) and UCF101 (94.2%). We also visualize the learned
ConvNet models, which qualitatively demonstrates the effectiveness of
temporal segment network and the proposed good practices. 1
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1 Introduction

Video-based action recognition has drawn a significant amount of attention from
the academic community [1–6], owing to its applications in many areas like se-
curity and behavior analysis. In action recognition, there are two crucial and
complementary aspects: appearances and dynamics. The performance of a recog-
nition system depends, to a large extent, on whether it is able to extract and
utilize relevant information therefrom. However, extracting such information is
non-trivial due to a number of complexities, such as scale variations, view point
changes, and camera motions. Thus it becomes crucial to design effective rep-
resentations that can deal with these challenges while preserve categorical in-
formation of action classes. Recently, Convolutional Networks (ConvNets) [7]

1 Models and code at https://github.com/yjxiong/temporal-segment-networks.
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have witnessed great success in classifying images of objects, scenes, and com-
plex events [8–11]. ConvNets have also been introduced to solve the problem
of video-based action recognition [12, 1, 13, 14]. Deep ConvNets come with great
modeling capacity and are capable of learning discriminative representation from
raw visual data with the help of large-scale supervised datasets. However, unlike
image classification, end-to-end deep ConvNets remain unable to achieve sig-
nificant advantage over traditional hand-crafted features for video-based action
recognition.

In our view, the application of ConvNets in video-based action recognition
is impeded by two major obstacles. First, long-range temporal structure plays
an important role in understanding the dynamics in action videos [15–18]. How-
ever, mainstream ConvNet frameworks [1, 13] usually focus on appearances and
short-term motions, thus lacking the capacity to incorporate long-range temporal
structure. Recently there are a few attempts [19, 4, 20] to deal with this prob-
lem. These methods mostly rely on dense temporal sampling with a pre-defined
sampling interval. This approach would incur excessive computational cost when
applied to long video sequences, which limits its application in real-world prac-
tice and poses a risk of missing important information for videos longer than the
maximal sequence length. Second, in practice, training deep ConvNets requires
a large volume of training samples to achieve optimal performance. However,
due to the difficulty in data collection and annotation, publicly available ac-
tion recognition datasets (e.g. UCF101 [21], HMDB51 [22]) remain limited, in
both size and diversity. Consequently, very deep ConvNets [9, 23], which have
attained remarkable success in image classification, are confronted with high risk
of over-fitting.

These challenges motivate us to study two problems: 1) how to design an ef-
fective and efficient video-level framework for learning video representation that
is able to capture long-range temporal structure; 2) how to learn the ConvNet
models given limited training samples. In particular, we build our method on top
of the successful two-stream architecture [1] while tackling the problems men-
tioned above. In terms of temporal structure modeling, a key observation is that
consecutive frames are highly redundant. Therefore, dense temporal sampling,
which usually results in highly similar sampled frames, is unnecessary. Instead a
sparse temporal sampling strategy will be more favorable in this case. Motivated
by this observation, we develop a video-level framework, called temporal segment
network (TSN). This framework extracts short snippets over a long video se-
quence with a sparse sampling scheme, where the samples distribute uniformly
along the temporal dimension. Thereon, a segmental structure is employed to ag-
gregate information from the sampled snippets. In this sense, temporal segment
networks are capable of modeling long-range temporal structure over the whole
video. Moreover, this sparse sampling strategy preserves relevant information
with dramatically lower cost, thus enabling end-to-end learning over long video
sequences under a reasonable budget in both time and computing resources.

To unleash the full potential of temporal segment network framework, we
adopt very deep ConvNet architectures [23, 9] introduced recently, and explored
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a number of good practices to overcome the aforementioned difficulties caused by
the limited number of training samples, including 1) cross-modality pre-training;
2) regularization; 3) enhanced data augmentation. Meanwhile, to fully utilize
visual content from videos, we empirically study four types of input modalities
to two-stream ConvNets, namely a single RGB image, stacked RGB difference,
stacked optical flow field, and stacked warped optical flow field.

We perform experiments on two challenging action recognition datasets,
namely UCF101 [21] and HMDB51 [22], to verify the effectiveness of our method.
In experiments, models learned using the temporal segment network significant-
ly outperform the state of the art on these two challenging action recognition
datasets. We also visualize the our learned two-stream models trying to provide
some insights for future action recognition research.

2 Related Works

Action recognition has been extensively studied in past few years [2, 24–26, 18].
Previous works related to ours fall into two categories: (1) convolutional networks
for action recognition, (2) temporal structure modeling.

Convolutional Networks for Action Recognition. Several works have
been trying to design effective ConvNet architectures for action recognition in
videos [12, 1, 13, 27, 28]. Karpathy et al. [12] tested ConvNets with deep struc-
tures on a large dataset (Sports-1M). Simonyan et al. [1] designed two-stream
ConvNets containing spatial and temporal net by exploiting ImageNet dataset
for pre-training and calculating optical flow to explicitly capture motion informa-
tion. Tran et al. [13] explored 3D ConvNets [27] on the realistic and large-scale
video datasets, where they tried to learn both appearance and motion features
with 3D convolution operations. Sun et al. [28] proposed a factorized spatio-
temporal ConvNets and exploited different ways to decompose 3D convolutional
kernels. Recently, several works focused on modeling long-range temporal struc-
ture with ConvNets [4, 19, 20]. However, these methods directly operated on a
longer continuous video streams. Limited by computational cost these methods
usually process sequences of fixed lengths ranging from 64 to 120 frames. It is
non-trivial for these methods to learn from entire video due to their limited tem-
poral coverage. Our method differs from these end-to-end deep ConvNets by its
novel adoption of a sparse temporal sampling strategy, which enables efficient
learning using the entire videos without the limitation of sequence length.

Temporal Structure Modeling. Many research works have been devot-
ed to modeling the temporal structure for action recognition [15–17, 29, 30, 18].
Gaidon et al. [16] annotated each atomic action for each video and proposed
Actom Sequence Model (ASM) for action detection. Niebles et al. [15] proposed
to use latent variables to model the temporal decomposition of complex actions,
and resorted to the Latent SVM [31] to learn the model parameters in an itera-
tive approach. Wang et al. [17] and Pirsiavash et al. [29] extended the temporal
decomposition of complex action into a hierarchical manner using Latent Hierar-
chical Model (LHM) and Segmental Grammar Model (SGM), respectively. Wang
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et al. [30] designed a sequential skeleton model (SSM) to capture the relations
among dynamic-poselets, and performed spatio-temporal action detection. Fer-
nando [18] modeled the temporal evolution of BoVW representations for action
recognition. These methods, however, remain unable to assemble an end-to-end
learning scheme for modeling the temporal structure. The proposed temporal
segment network, while also emphasizing this principle, is the first framework
for end-to-end temporal structure modeling on the entire videos.

3 Action Recognition with Temporal Segment Networks

In this section, we give detailed descriptions of performing action recognition
with temporal segment networks. Specifically, we first introduce the basic con-
cepts in the framework of temporal segment network. Then, we study the good
practices in learning two-stream ConvNets within the temporal segment net-
work framework. Finally, we describe the testing details of the learned two-
stream ConvNets.

3.1 Temporal Segment Networks

As we discussed in Sec. 1, an obvious problem of the two-stream ConvNets in
their current forms is their inability in modeling long-range temporal structure.
This is mainly due to their limited access to temporal context as they are de-
signed to operate only on a single frame (spatial networks) or a single stack of
frames in a short snippet (temporal network). However, complex actions, such
as sports action, comprise multiple stages spanning over a relatively long time.
It would be quite a loss failing to utilize long-range temporal structures in these
actions into ConvNet training. To tackle this issue, we propose temporal seg-
ment network, a video-level framework as shown in Figure 1, to enable to model
dynamics throughout the whole video.

Specifically, our proposed temporal segment network framework, aiming to
utilize the visual information of entire videos to perform video-level prediction,
is also composed of spatial stream ConvNets and temporal stream ConvNets.
Instead of working on single frames or frame stacks, temporal segment networks
operate on a sequence of short snippets sparsely sampled from the entire video.
Each snippet in this sequence will produce its own preliminary prediction of
the action classes. Then a consensus among the snippets will be derived as
the video-level prediction. In the learning process, the loss values of video-level
predictions, other than those of snippet-level predictions which were used in two-
stream ConvNets, are optimized by iteratively updating the model parameters.

Formally, given a video V , we divide it into K segments {S1, S2, · · · , SK}
of equal durations. Then, the temporal segment network models a sequence of
snippets as follows:

TSN(T1, T2, · · · , TK) = H(G(F(T1;W),F(T2;W), · · · ,F(TK ;W))). (1)
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Fig. 1. Temporal segment network: One input video is divided into K segments and
a short snippet is randomly selected from each segment. The class scores of different
snippets are fused by an the segmental consensus function to yield segmental consensus,
which is a video-level prediction. Predictions from all modalities are then fused to
produce the final prediction. ConvNets on all snippets share parameters.

Here (T1, T2, · · · , TK) is a sequence of snippets. Each snippet Tk is randomly
sampled from its corresponding segment Sk. F(Tk;W) is the function repre-
senting a ConvNet with parameters W which operates on the short snippet Tk

and produces class scores for all the classes. The segmental consensus function
G combines the outputs from multiple short snippets to obtain a consensus of
class hypothesis among them. Based on this consensus, the prediction functionH
predicts the probability of each action class for the whole video. Here we choose
the widely used Softmax function for H. Combining with standard categori-
cal cross-entropy loss, the final loss function regarding the segmental consensus
G = G(F(T1;W),F(T2;W), · · · ,F(TK ;W)) is formed as

L(y,G) = −
C∑
i=1

yi

Gi − log

C∑
j=1

expGj

 , (2)

where C is the number of action classes and yi the groundtruth label concerning
class i. In experiments, the number of snippets K is set to 3 according to previous
works on temporal modeling [16, 17]. The form of consensus function G remains
an open question. In this work we use the simplest form of G, where Gi =
g(Fi(T1), . . . ,Fi(TK)). Here a class score Gi is inferred from the scores of the
same class on all the snippets, using an aggregation function g. We empirically
evaluated several different forms of the aggregation function g, including evenly
averaging, maximum, and weighted averaging in our experiments. Among them,
evenly averaging is used to report our final recognition accuracies.

This temporal segment network is differentiable or at least has subgradients,
depending on the choice of g. This allows us to utilize the multiple snippets
to jointly optimize the model parameters W with standard back-propagation
algorithms. In the back-propagation process, the gradients of model parameters
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W with respect to the loss value L can be derived as

∂L(y,G)

∂W
=

∂L
∂G

K∑
k=1

∂G
∂F(Tk)

∂F(Tk)

∂W
, (3)

where K is number of segments temporal segment network uses.
When we use a gradient-based optimization method, like stochastic gradi-

ent descent (SGD), to learn the model parameters, Eq. 3 guarantees that the
parameter updates are utilizing the segmental consensus G derived from all
snippet-level prediction. Optimized in this manner, temporal segment network-
can learn model parameters from the entire video rather than a short snippet.
Meanwhile, by fixing K for all videos, we assemble a sparse temporal sampling
strategy, where the sampled snippets contain only a small portion of the frames.
It drastically reduces the computational cost for evaluating ConvNets on the
frames, compared with previous works using densely sampled frames [4, 19, 20].

3.2 Learning Temporal Segment Networks

Temporal segment network provides a solid framework to perform video-level
learning, but to achieve optimal performance, a few practical concerns have to
be taken care of, for example the limited numberof training samples. To this
end, we study a series of good practices in training deep ConvNets on video
data, which are also directly applicable in learning temporal segment networks.

Network Architectures. Network architecture is an important factor in
neural network design. Several works have shown that deeper structures improve
object recognition performance [9, 10]. However, the original two-stream Con-
vNets [1] employed a relatively shallow network structure (ClarifaiNet [32]). In
this work, we choose the Inception with Batch Normalization (BN-Inception) [23]
as building block, due to its good balance between accuracy and efficiency. We
adapt the original BN-Inception architecture to the design of two-stream Con-
vNets. Like in the original two-stream ConvNets [1], the spatial stream ConvNet
operates on a single RGB images, and the temporal stream ConvNet takes a s-
tack of consecutive optical flow fields as input.

Network Inputs. We are also interested in exploring more input modalities
to enhance the discriminative power of temporal segment networks. Originally,
the two-stream ConvNets used RGB images for the spatial stream and stacked
optical flow fields for the temporal stream. Here, we propose to study two extra
modalities, namely RGB difference and warped optical flow fields.

A single RGB image usually encodes static appearance at a specific time
point and lacks the contextual information about previous and next frames. As
shown in Figure 2, RGB difference between two consecutive frames describe the
appearance change, which may correspond to the motion salient region. Inspired
by [28], We experiment with adding stacked RGB difference as another input
modality and investigate its performance in action recognition.

The temporal stream ConvNets take optical flow field as input and aim to
capture the motion information. In realistic videos, however, there usually ex-
ists camera motion, and optical flow fields may not concentrate on the human
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Fig. 2. Examples of four types of input modality: RGB images, RGB difference, optical
flow fields (x,y directions), and warped optical flow fields (x,y directions)

action. As shown in Figure 2, a remarkable amount of horizontal movement is
highlighted in the background due to the camera motion. Inspired by the work
of improved dense trajectories [2], we propose to take warped optical flow fields
as additional input modality. Following [2], we extract the warped optical flow
by first estimating homography matrix and then compensating camera motion.
As shown in Figure 2, the warped optical flow suppresses the background motion
and makes motion concentrate on the actor.

Network Training. As the datasets for action recognition are relatively s-
mall, training deep ConvNets is challenged by the risk of over-fitting. To mitigate
this problem, we design several strategies for training the ConvNets in temporal
segment networks as follows.

Cross Modality Pre-training. Pre-training has turned out to be an effective
way to initialize deep ConvNets when the target dataset does not have enough
training samples [1]. As spatial networks take RGB images as input, it is nat-
ural to exploit models trained on the ImageNet [33] as initialization. For other
modalities such as optical flow field and RGB difference, they essentially capture
different visual aspects of video data and their distributions are different from
that of RGB images. We come up with a cross modality pre-training technique
in which we utilize RGB models to initialize the temporal networks. First, we
discretize optical flow fields into the interval from 0 to 255 by a linear trans-
formation. This step makes the range of optical flow fields to be the same with
RGB images. Then, we modify the weights of first convolution layer of RGB
models to handle the input of optical flow fields. Specifically, we average the
weights across the RGB channels and replicate this average by the channel num-
ber of temporal network input. This initialization method works pretty well for
temporal networks and reduce the effect of over-fitting in experiments.

Regularization Techniques. Batch Normalization [23] is an important compo-
nent to deal with the problem of covariate shift. In the learning process, batch
normalization will estimate the activation mean and variance within each batch
and use them to transform these activation values into a standard Gaussian dis-
tribution. This operation speeds up the convergence of training but also leads
to over-fitting in the transferring process, due to the biased estimation of acti-
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vation distributions from limited number of training samples. Therefore, after
initialization with pre-trained models, we choose to freeze the mean and vari-
ance parameters of all Batch Normalization layers except the first one. As the
distribution of optical flow is different from the RGB images, the activation val-
ue of first convolution layer will have a different distribution and we need to
re-estimate the mean and variance accordingly. We call this strategy partial
BN. Meanwhile, we add a extra dropout layer after the global pooling lay-
er in BN-Inception architecture to further reduce the effect of over-fitting. The
dropout ratio is set as 0.8 for spatial stream ConvNets and 0.7 for temporal
stream ConvNets.

Data Augmentation. Data augmentation can generate diverse training sam-
ples and prevent severe over-fitting. In the original two-stream ConvNets, ran-
dom cropping and horizontal flipping are employed to augment training samples.
We exploit two new data augmentation techniques: corner cropping and scale-
jittering. In corner cropping technique, the extracted regions are only selected
from the corners or the center of the image to avoid implicitly focusing on the
center area of a image. In multi-scale cropping technique, we adapt the scale
jittering technique [9] used in ImageNet classification to action recognition. We
present an efficient implementation of scale jittering. We fix the size of input im-
age or optical flow fields as 256×340, and the width and height of cropped region
are randomly selected from {256, 224, 192, 168}. Finally, these cropped regions
will be resized to 224 × 224 for network training. In fact, this implementation
not only contains scale jittering, but also involves aspect ratio jittering.

3.3 Testing Temporal Segment Networks

Finally, we present our testing method for temporal segment networks. Due to
the fact that all snippet-level ConvNets share the model parameters in temporal
segment networks, the learned models can perform frame-wise evaluation as nor-
mal ConvNets. This allows us to carry out fair comparison with models learned
without the temporal segment network framework. Specifically, we follow the
testing scheme of the original two-stream ConvNets [1], where we sample 25
RGB frames or optical flow stacks from the action videos. Meanwhile, we crop
4 corners and 1 center, and their horizontal flipping from the sampled frames to
evaluate the ConvNets. For the fusion of spatial and temporal stream networks,
we take a weighted average of them. When learned within the temporal segment
networkframework, the performance gap between spatial stream ConvNets and
temporal stream ConvNets is much smaller than that in the original two-stream
ConvNets. Based on this fact, we give more credits to the spatial stream by set-
ting its weight as 1 and that of temporal stream as 1.5. When both normal and
warped optical flow fields are used, the weight of temporal stream is divided to
1 for optical flow and 0.5 for warped optical flow. It is described in Sec. 3.1 that
the segmental consensus function is applied before the Softmax normalization.
To test the models in compliance with their training, we fuse the prediction
scores of 25 frames and different streams before Softmax normalization.
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4 Experiments

In this section, we first introduce the evaluation datasets and the implementa-
tion details of our approach. Then, we explore the proposed good practices for
learning temporal segment networks. After this, we demonstrate the importance
of modeling long-term temporal structures by applying the temporal segment
network framework. We also compare the performance of our method with the
state of the art. Finally, we visualize our learned ConvNet models.

4.1 Datasets and Implementation Details

We conduct experiments on two large action datasets, namely HMDB51 [22]
and UCF101 [21]. The UCF101 dataset contains 101 action classes and 13, 320
video clips. We follow the evaluation scheme of the THUMOS13 challenge [34]
and adopt the three training/testing splits for evaluation. The HMDB51 dataset
is a large collection of realistic videos from various sources, such as movies and
web videos. The dataset is composed of 6, 766 video clips from 51 action cate-
gories. Our experiments follow the original evaluation scheme using three train-
ing/testing splits and report average accuracy over these splits.

We use the mini-batch stochastic gradient descent algorithm to learn the
network parameters, where the batch size is set to 256 and momentum set to
0.9. We initialize network weights with pre-trained models from ImageNet [33].
We set a smaller learning rate in our experiments. For spatial networks, the
learning rate is initialized as 0.01 and decreases to its 1

10 every 2, 000 iterations.
The whole training procedure stops at 4, 500 iterations. For temporal networks,
we initialize the learning rate as 0.005, which reduces to its 1

10 after 12, 000 and
18, 000 iterations. The maximum iteration is set as 20, 000. Concerning data aug-
mentation, we use the techniques of location jittering, horizontal flipping, corner
cropping, and scale jittering, as specified in Section 3.2. For the extraction of
optical flow and warped optical flow, we choose the TVL1 optical flow algorithm
[35] implemented in OpenCV with CUDA. To speed up training, we employ a
data-parallel strategy with multiple GPUs, implemented with our modified ver-
sion of Caffe [36] and OpenMPI 2. The whole training time on UCF101 is around
2 hours for spatial TSNs and 12 hours for temporal TSNs with 8 TITANX GPUs.

4.2 Exploration Study

In this section, we focus on the investigation the good practices described in
Sec. 3.2, including the training strategies and the input modalities. In this ex-
ploration study, we use the two-stream ConvNets with very deep architecture
adapted from [23] and perform all experiments on the split 1 of UCF101 dataset.

We propose two training strategies in Section 3.2, namely cross modality pre-
training and partial BN with dropout. Specifically, we compare four settings: (1)
training from scratch, (2) only pre-train spatial stream as in [1], (3) with cross

2 https://github.com/yjxiong/caffe
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Table 1. Exploration of different training strategies for two-stream ConvNets on the
UCF101 dataset (split 1).

Training setting Spatial ConvNets Temporal ConvNets Two-Stream

Baseline [1] 72.7% 81.0% 87.0%

From Scratch 48.7% 81.7% 82.9%

Pre-train Spatial(same as [1]) 84.1% 81.7% 90.0%

+ Cross modality pre-training 84.1% 86.6% 91.5%

+ Partial BN with dropout 84.5% 87.2% 92.0%

modality pre-training, (4) combination of cross modality pre-training and partial
BN with dropout. The results are summarized in Table 1. First, we see that the
performance of training from scratch is much worse than that of the original two-
stream ConvNets (baseline), which implies carefully designed learning strategy
is necessary to reduce the risk of over-fitting, especially for spatial networks.
Then, We resort to the pre-training of the spatial stream and cross modality pre-
training of the temporal stream to help initialize two-stream ConvNets and it
achieves better performance than the baseline. We further utilize the partial BN
with dropout to regularize the training procedure, which boosts the recognition
performance to 92.0%.

We propose two new types of modalities in Section 3.2: RGB difference and
warped optical flow fields. Results on comparing the performance of different
modalities are reported in Table 2. These experiments are carried out with all
the good practices verified in Table 1. We first observe that the combination of
RGB images and RGB differences boosts the recognition performance to 87.3%
. This result indicates that RGB images and RGB difference may encode com-
plementary information. Then it is shown that optical flow and warped optical
flow yield quite similar performance (87.2% vs. 86.9%) and the fusion of them
can improve the performance to 87.8%. Combining all of four modalities leads
to an accuracy of 91.7%. As RGB difference may describe similar but unsta-
ble motion patterns, we also evaluate the performance of combining the other
three modalities and this brings better recognition accuracy (92.3% vs 91.7%).
We conjecture that the optical flow is better at capturing motion information
and sometimes RGB difference may be unstable for describing motions. On the
other hand, RGB difference may serve as a low-quality, high-speed alternative
for motion representations.

4.3 Evaluation of Temporal Segment Networks

In this subsection, we focus on the study of the temporal segment network frame-
work. We first study the effect of segmental consensus function and then compare
different ConvNet architectures on the split 1 of UCF101 dataset. For fair com-
parison, we only use RGB images and optical flow fields for input modalities in
this exploration. As mentioned in Sec 3.1, the number of segments K is set to 3.
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Table 2. Exploration of different input modalities for two-stream ConvNets on the
UCF101 dataset (split 1).

Modality Performance

RGB Image 84.5%

RGB Difference 83.8%

RGB Image + RGB Difference 87.3%

Optical Flow 87.2%

Warped Flow 86.9%

Optical Flow + Warped Flow 87.8%

Optical Flow + Warped Flow + RGB 92.3%

All Modalities 91.7%

Table 3. Exploration of different segmental consensus functions for temporal segment
networks on the UCF101 dataset (split 1).

Consensus Function Spatial ConvNets Temporal ConvNets Two-Stream

Max 85.0% 86.0% 91.6%

Average 85.7% 87.9% 93.5%

Weighted Average 86.2% 87.7% 92.4%

In Eq. (1), a segmental consensus function is defined by its aggregation func-
tion g. Here we evaluate three candidates: (1) max pooling, (2) average pooling,
(3) weighted average, for the form of g. The experimental results are summarized
in Table 3. We see that average pooling function achieves the best performance.
So in the following experiments, we choose average pooling as the default aggre-
gation function. Then we compare the performance of different network architec-
tures and the results are summarized in Table 4. Specifically, we compare three
very deep architectures: BN-Inception [23], GoogLeNet [10], and VGGNet-16 [9],
all these architectures are trained with the good practices aforementioned. A-
mong the compared architectures, the very deep two-stream ConvNets adapted
from BN-Inception [23] achieves the best accuracy of 92.0%. This is in accor-
dance with its better performance in the image classification task. So we choose
BN-Inception [23] as the ConvNet architecture for temporal segment networks.

With all the design choices set, we now apply the temporal segment net-
work (TSN) to the action recognition. The result is illustrated in Table 4. A
component-wise analysis of the components in terms of the recognition accura-
cies is also presented in Table 5. We can see that temporal segment networkis
able to boost the performance of the model even when all the discussed good
practices are applied. This corroborates that modeling long-term temporal struc-
tures is crucial for better understanding of action in videos. And it is achieved
by temporal segment networks.
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Table 4. Exploration of different very deep ConvNet architectures on the UCF101
dataset (split 1). “BN-Inception+TSN” refers to the setting where the temporal seg-
ment networkframework is applied on top of the best performing BN-Inception [23]
architecture.

Training setting Spatial ConvNets Temporal ConvNets Two-Stream

Clarifai [1] 72.7% 81.0% 87.0%

GoogLeNet 77.1% 83.9% 89.0%

VGGNet-16 79.8% 85.7% 90.9%

BN-Inception 84.5% 87.2% 92.0%

BN-Inception+TSN 85.7% 87.9% 93.5%

Table 5. Component analysis of the proposed method on the UCF101 dataset (split
1). From left to right we add the components one by one. BN-Inception [23] is used as
the ConvNet architecture.

Component Basic
Two-Stream [1]

Cross-Modality
Pre-training

Partial BN
with dropout

Temporal
Segment Networks

Accuracy 90.0% 91.5 92.0% 93.5%

4.4 Comparison with the State of the Art

After exploring of the good practices and understanding the effect of temporal
segment network, we are ready to build up our final action recognition method.
Specifically, we assemble three input modalities and all the techniques described
as our final recognition approach, and test it on two challenging datasets: HMD-
B51 and UCF101. The results are summarized in Table 6, where we compare our
method with both traditional approaches such as improved trajectories (iDT-
s) [2], MoFAP representations [39], and deep learning representations, such as
3D convolutional networks (C3D) [13], trajectory-pooled deep-convolutional de-
scriptors (TDD) [5], factorized spatio-temporal convolutional networks (FSTCN)
[28], long term convolution networks (LTC) [19], and key volume mining frame-
work (KVMF). Our best result outperforms other methods by 3.9% on the H-
MDB51 dataset, and 1.1% on the UCF101 dataset. The superior performance
of our methods demonstrates the effectiveness of temporal segment networkand
justifies the importance of long-term temporal modeling.

4.5 Model Visualization

Besides recognition accuracies, we would like to attain further insight into the
learned ConvNet models. In this sense, we adopt the DeepDraw [42] toolbox.
This tool conducts iterative gradient ascent on input images with only white
noises. Thus the output after a number of iterations can be considered as class
visualization based solely on class knowledge inside the ConvNet model. The
original version of the tool only deals with RGB data. To conduct visualiza-
tion on optical flow based models, we adapt the tool to work with our temporal
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Table 6. Comparison of our method based on temporal segment network(TSN) with
other state-of-the-art methods. We separately present the results of using two input
modalities (RGB+Flow) and three input modalities (RGB+Flow+Warped Flow).

HMDB51 UCF101

DT+MVSV [37] 55.9% DT+MVSV [37] 83.5%
iDT+FV [2] 57.2% iDT+FV [38] 85.9%
iDT+HSV [25] 61.1% iDT+HSV [25] 87.9%
MoFAP [39] 61.7% MoFAP [39] 88.3%

Two Stream [1] 59.4% Two Stream [1] 88.0%
VideoDarwin [18] 63.7% C3D (3 nets) [13] 85.2%
MPR [40] 65.5% Two stream +LSTM [4] 88.6%
FSTCN (SCI fusion) [28] 59.1% FSTCN (SCI fusion) [28] 88.1%
TDD+FV [5] 63.2% TDD+FV [5] 90.3%
LTC [19] 64.8% LTC [19] 91.7%
KVMF [41] 63.3% KVMF [41] 93.1%

TSN (2 modalities) 68.5% TSN (2 modalities) 94.0%
TSN (3 modalities) 69.4% TSN (3 modalities) 94.2%

ConvNets. As a result, we for the first time visualize interesting class informa-
tion in action recognition ConvNet models. We randomly pick five classes from
the UCF101 dataset, Taichi, Punch, Diving, Long Jump, and Biking for visu-
alization. The results are shown in Fig. 3. For both RGB and optical flow, we
visualize the ConvNet models learned with following three settings: (1) without
pre-training; (2) only with pre-training; (3) with temporal segment network.

Generally speaking, models with pre-training are more capable of represent-
ing visual concepts than those without pre-training. One can see that both spatial
and temporal models without pre-training can barely generate any meaningful
visual structure. With the knowledge transferred from the pre-training process,
the spatial and temporal models are able to capture structured visual patterns.

It is also easy to notice that the models, trained with only short-term infor-
mation such as single frames, tend to mistake the scenery patterns and objects
in the videos as significant evidences for action recognition. For example, in the
class “Diving”, the single-frame spatial stream ConvNet mainly looks for wa-
ter and diving platforms, other than the person performing diving. Its temporal
stream counterpart, working on optical flow, tends to focus on the motion caused
by waves of surface water. With long-term temporal modeling introduced by
temporal segment network, it becomes obvious that learned models focus more
on humans in the videos, and seem to be modeling the long-range structure of
the action class. Still consider “Diving” as the example, the spatial ConvNet
with temporal segment networknow generate a image that human is the major
visual information. And different poses can be identified in the image, depicting
various stages of one diving action. This suggests that models learned with the
proposed method may perform better, which is well reflected in our quantitative
experiments. We refer the reader to supplementary materials for visualization of
more action classes and more details on the visualization process.
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Without Pretrain With Pretrain
Temporal 

Segment Network

Spatial ConvNets

Without Pretrain  With Pretrain

Temporal ConvNets

Diving

Long 
Jump

Taichi

Punch

Biking

Temporal 
Segment Network

Fig. 3. Visualization of ConvNet models for action recognition using DeepDraw [42].
We compare three settings: (1) without pre-train; (2) with pre-train; (3) with temporal
segment network. For spatial ConvNets, we plot three generated visualization as color
images. For temporal ConvNets, we plot the flow maps of x (left) and y (right) direc-
tions in gray-scales. Note all these images are generated from purely random pixels.

5 Conclusions

In this paper, we presented the Temporal Segment Network (TSN), a video-level
framework that aims to model long-term temporal structure. As demonstrated
on two challenging datasets, this work has brought the state of the art to a new
level, while maintaining a reasonable computational cost. This is largely ascribed
to the segmental architecture with sparse sampling, as well as a series of good
practices that we explored in this work. The former provides an effective and
efficient way to capture long-term temporal structure, while the latter makes
it possible to train very deep networks on a limited training set without severe
overfitting.
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