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Visual understanding lies in the heart of visual perception. To

understand visual signals, a human vision system must learn to

process perceived information from multiple aspect. For exam-

ple, a complex real life event may involve several objects and hu-

man object interactions. Seeing the image from one aspect and

make prediction is obvious suboptimal. This imposes challenge

to current single view based methods. In this thesis work, we

emphasize the idea that computer vision system should combine

multiple aspects of data in the learning and prediction processes.

The resultant approaches have led to superior performances in

several high-level visual understanding tasks driven by curated

data.

In the first part of this thesis work, we propose a multi-

channel deep neural networks architecture to tackle the problem

of event recognition from still images. The model is devised to
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unify both appearance and spatial configuration information of

event images in an end-to-end manner of learning. The learned

model performs well in capturing both the visual appearances

and human-object interaction and combining them to predic-

t the underlying event categories. This part of work has been

published in Proceedings of IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR) 2015.

In the second part of this thesis work, a new image tag-

ging framework featuring two complementary techniques: S-

caled View Integration and Contrastive Bundled Loss, is pro-

posed. These two techniques effectively combines the informa-

tion scattered in different locations and scales of the input im-

ages and use them to help the classifier learning the underlying

visual concepts contrastively. Improvement of performance on

several dataset is observed to corroborate the effectiveness of

out method.

In the third part of this thesis work, we propose a framework

called temporal segment networks (TSN) to deal with the prob-

lem of recognizing human activities from videos. The framework

aims to combine appearances, shot-term motions, and long-term

temporal structures. A unified deep neural networks model is

designed under the framework to learn the activity representa-

tion from these multiple aspect of video data. The framework

combines a sparse temporal sampling strategy and video-level

supervision to enable efficient and effective learning using the

whole action video. It is demonstrated that this strategy leads
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to superior recognition performance and better activity repre-

sentations. This part of work has been accepted to European

Conference on Computer Vision (ECCV) 2016
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摘摘摘要要要

視覺理解一直是計算機視覺研究中的核心內容。為了理解視覺

信息，人類的視覺系統通常從多個方面去處理感受到的視覺信

號。以事件識別為例：真實生活中的複雜事件，通常包含了數

個物體以及人與物體之間的互動關係。此時，只從一個方面去

觀察圖象顯然是不夠的，這就為目前計算機視覺研究中常用的

基於單個視角的方法帶來了挑戰。在本論文中，對於計算機視

覺系統，我們強調在其學習和推斷的過程中，需要對輸入數據

不同方面的信息進行綜合。基於此思想我們在數個基於數據驅

動的高層次視覺理解任務中，提出了新的模型框架比得到了較

好的性能表現。

本論文的第一部分中，我們提出了一個多通道的深度神經

網絡結構來解決從靜態圖象中進行事件識別的問題。該模型可

以同時聯合形狀和物體空間關係的信息以實現端到端的事件識

別系統的學習。學習完成後的系統可以很好地同時捕捉形狀信

息以及物體與物體，物體與人之間的相互作用的信息，以用於

事件識別。這部分工作已於IEEE計算機視覺和模式識別會議

（CVPR）2015發表。

本論文的第二部分中，我們提出了一個新的圖象自動標籤

框架。該框架包含兩項新的技術：多尺度視角綜合，以及對比
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式集束學習。通過這兩個技術，我們可以有效地綜合散落在圖

片上各個區域以及不同尺度的信息，並通過不同標籤類別之前

的對比，提高學習的效率和準確性。在多個數據集的測試中，

本框架都得到了優秀的表現，證明了我們的方法的優越性。

在本論文的第三部分中，我們提出了分段式網絡模型來解

決在視頻中進行人類動作識別的問題。該框架致力於聯合的信

息包括形狀、短期的運動以及長期的時序關係。一個統一的卷

積神經網絡被設計用來從這些信息中學習動作的表示。這個框

架結合了新的稀疏時間采樣策略和全視頻監督方法來快速有效

地從整個動作視頻中進行學習。在實驗中，該模型被證實可

以帶來較大的性能提升。這部分工作于歐洲計算機視覺會議

（ECCV）2016發表。
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Chapter 1

Introduction

Visual recognition describes a set of tasks for visual system to

recognize visual patterns, objects, and concepts. Due to its un-

limited potential applications, it has always been in the central

position of computer vision research, drawing plenty of effort-

s. With years of hard works, people have amasses plenty of

previous works on this task. Most classical approaches to deal

with visual recognition can be viewed as the combination of two

components: a hand-crafted feature extraction module and one

machine learning based classifier module. It has been shown

that, simple hand-crafted features are not enough to recognize

complex visual objects. The major obstacle here, is a giant se-

mantic gap from low-level feature descriptors, which are often

based on pixel statistics or gradients, to complex visual concepts

in our lives. Due this difficulty, recognition system has paced

slowly for decades.
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1.1 Deep Learning

A series of breakthroughs took place in the past several year

with the introducing of deep learning based methods. The core

idea of deep learning features two important concepts: 1) a u-

nified architecture that performs feature extraction and classifi-

cation in one pass, and can jointly optimize all its parameters,

which may sometimes be referred to as end-to-end learning ; 2)

a deep architecture that are composed a lot of intermediate neu-

ral networks modules (sometimes called “layers”), which process

information consecutively and thus ease the abstraction burden

for each module. With these two distinct properties, deep learn-

ing has achieved exciting results on many of visual recognition

tasks, including face recognition, single object recognition and

detection.

In spite of these great achievements, most current deep learn-

ing methods are still focusing on one single perspective of its

input data. For example an object recognition system usually

only considers the pixel appearances as they are sufficient for

recognizing the object in one input image. As we are moving

toward higher-level visual understanding tasks, this simple ap-

proach will gradually fall insufficient to fulfill the requirement for

precise recognition. The major problem is that high-level visual

concepts, such as events, activities, or other general visual con-

cepts, usually refer to multiple simple objects, motions, changes,

and sometimes their interactions. These important information
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will not all present in one perspective of the input images or

videos, requiring techniques to identify and utilize information

from multiple aspects of data. However, how to achieve this is

still an open question, which motivates us to explore the solu-

tions.

1.2 Combining Multiple Aspect of Data

It has been described above the importances of combining

multiple aspects of data. The question remains how to effi-

ciently realize this philosophy. In general, there are three ma-

jor challenges for related approaches. The first one, before any

learning can be performed, is to identify potential useful per-

spectives of data. For example, in event recognition, the spatial

configuration of object is a rarely explored aspects but serves

an important role in forming an event. The second challenge

is how to represent and comprehend the additional aspects of

data. As an example, the optical flow data in action is known to

provide information on shot-term motions, but there lack an ef-

ficient model to capture the long-term information. The last but

not the least one, is how to combine the information surfaced

from these aspects. In this thesis work, we aim to address these

challenges in context of specific high-level visual understanding

tasks.
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1.3 Our Approaches

In this thesis work, we deals with three visual understanding

tasks, namely complex event recognition, multi-label image tag-

ging, and human activity classification from video. In dealing

with these problems, we bear in mind the philosophy of combin-

ing multiple aspects of data. For each specific task, we get the

solution by addressing the challenges described in Sec. 1.2. By

evaluating the performances gain of the proposed models against

the baselines, we can examine the effectiveness of this strategy.

Complex Event Recognition The essential task of a event recog-

nition system is to decide for each image the underlying event

happening. The target events are mostly daily events in normal

people’s life, which makes the source of image abundant on the

Internet. One major difficulty of event recognition problem lies

in that there is a great semantic gap from appearances on the

image to complex meaning of a daily event. Some events are

the composition of multiple objects, people, and their interac-

tions. This makes the baseline model with single convolution

neural network, which is designed mainly for dominant object

recognition task, insufficient to extract enough information to

consolidate the classification.

In the first part of this thesis work, a multi-layer framework

is proposed to tackle this problem, which takes into accoun-

t both visual appearance and the interactions among humans
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and objects, and combines them via semantic fusion. To ad-

dress the problem of how to represent their interactions and

incorporate them into a deep model, a novel strategy is devised

which projects detected instances onto multi-scale spatial map-

s. On a large dataset with 60, 000 images, models based on

the proposed framework achieved substantial improvement over

the state-of-the-art, raising the accuracy of event recognition by

over 10%. This part of work has been published in Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) 2015.

Multi-label Image Tagging Multi-label image tagging is to as-

sign an uncertain number of related visual concepts to one input

image. The candidate concept pool can contain thousands of

concepts, where most of them are irrelevant. As another form

of high-level visual understanding, the difficulty here is how to

precisely identify the highly versatile and numerous visual con-

cepts with as least misses as possible. In this task, seeing the

image from single scale, and predicting labels independently, as

the baseline methods does, will not work optimally in solving

the problem. This reveals the necessities of seeing the images

from multiple scales and views, and learning the visual concepts

by comparison and contrasting.

In the second part of this thesis work, a new image tag-

ging framework suited for large-scale real-world applications is

proposed. The frameworks comprises two complementary tech-
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niques: Scaled View Integration, a new modeling strategy that

takes into account the association between tags and local re-

gions, and Contrastive Bundled Loss, a new loss formulation

with strong scalability to large tag space. Experimental results

on large datasets show that the combination of both techniques

results in superior tagging performance and higher learning ef-

ficiency as compared to the state-of-the-art.

Human Activity Video Recognition Human activity recognition

is about classifying the human performing actions in a video clip

into the corresponding categories. Moving from still images to

videos, the challenges not only arises from the increased amount

of image frames, but also from motion and temporal structures

that are non-existent in single images. Activities, by their def-

initions, depict changes of appearance in a moderate period of

time. Although short-term motion information is usually char-

acterized by dense optical flow. It is considered very hard to be

modeled with deep neural networks. Meanwhile, the long-term

structure, which could serve more vital roles in deciding the cat-

egory of an action, rarely received any attention in the research

community. High-level visual understanding, in this case, calls

for an system that can combine the above aspects of the video

data to perform accurate predictions.

In the third part of this thesis work, a novel framework, called

temporal segment networks, is proposed to tackle the activi-

ty classification problem. This framework features a very deep
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segmental architecture which enhance the modeling capacity of

deep networks by fusing information from different temporal seg-

ments of an action video. It also utilizes more diverse representa-

tion of both motion and appearance than previous approaches.

In experiments, the proposed approach improves state-the-of-

art performances on several datasets by a large margin. With

the help of a novel visualization tool, it is qualitatively demon-

strated that performance gain of the learned model comes from

the propose approach as expected. This part of work has been

accepted to European Conference on Computer Vision (ECCV)

2016



Chapter 2

Recognize Complex Events

from Images

The explosive growth of web images, driven primarily by the

thriving of online photo sharing services such as Flickr and In-

stagram, has been gradually and profoundly transforming our

lives and the way we communicate. Many of these images are

event photos, namely the ones that capture human activities in

either private or social contexts. Such images not only provide

valuable records of our lives and our world, but also convey use-

ful information that one can exploit to analyze consumer prefer-

ences or study socioeconomic trends. The primary goal of this

paper is to develop an effective method for recognizing events

from images. Inspired by the recent success of deep learning, we

formulate a multi-layer framework to tackle this problem, which

takes into account both visual appearance and the interactions

among humans and objects, and combines them via semantic

fusion. On a large dataset with 60, 000 images, the proposed

8
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method achieved substantial improvement over the state-of-the-

art, raising the accuracy of event recognition by over 10%.

Holistic 
Deep 

Representation

Spatial 
Detection

Map

Semantic Fusion

Event: Parade

Figure 2.1: Event recognition is highly challenging due to the large semantic

gap. Even in the same event class, Parade, the images can look very differ-

ent. This calls for methods that are capable of reasoning about high-level

semantics by fusing evidences of multiple aspects.
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2.1 Introduction of Event Recognition

Event recognition is not a new story in computer vision. How-

ever, most existing efforts [84, 16, 4] are devoted to recognizing

events from videos. Our daily experience seems to suggest peo-

ple can effortlessly identify events from photos most of the time.

This motivates us to explore a new approach, one that is able

to recognize events from static images.

This is a challenging problem. A major obstacle standing

in our way is the large gap between high-level event semantics

and low-level visual features. Event images are complex as com-

pared to object images. They usually involve multiple objects

interacting with each other. As we can see in Figure 2.1, two

images capturing the same kind of events can be vastly different

in their visual structures. Traditional methods that rely mainly

on shallow analysis of visual appearance would be faced with

substantial difficulties when applied to this task.

Recently, the use of convolutional neural networks (CNN) has

led to remarkable progress in several important vision tasks, in-

cluding image classification [41], object detection [24], and face

verification [81]. This line of work clearly demonstrates the supe-

rior capability of deep models in capturing complex variations

and the critical role of intermediate layers in bridging the se-

mantic gap. Following the lead of these efforts, we explore the

use of deep learning in this work, with an aim to bring its suc-

cess to the next level – from recognizing individual objects to
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understanding complex images as a whole.

Events, by nature, are defined by the interactions among key

entities, including humans and objects. Therefore, identifying

such entities in an image is a key step towards event understand-

ing. While a convolutional network formulated upon entire im-

ages is very powerful in modelling visual appearance, we found

empirically that it is not as effective as an dedicated detector,

especially in detecting humans. Our idea to tackle this problem

is very simple – use dedicated detectors to locate relevant en-

tities and incorporate them with the convolutional network to

predict the event class.

However, bounding boxes of detected objects and visual ap-

pearance features are very different by nature, and can not be

combined using conventional feature combination methods. In

this paper, we propose a novel way to address this. Instead of

directly using the bounding boxes, we project them onto multi-

scale spatial maps, bring the resultant maps together, and there-

on construct a convolutional network to derive a higher-level

representation. This construction not only provides a way to

express detecting results that is suited for higher-level analysis,

but also makes it possible to exploit the spatial co-occurrences

of different objects, which are important cues of their interac-

tions. With two convolutional networks, one upon the image

and the other upon the detection maps, we integrate them via

semantic fusion and obtain a fused representation that captures

key semantic elements of the event image.
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The major contributions of this work are summarized here:

(1) We explore a new approach to event recognition, which, un-

like most previous methods, rely solely on static images. (2) Rec-

ognizing that interactions among people and objects are essen-

tial for event understanding, we propose using dedicated detec-

tors to locate key entities, and develop a novel strategy, namely

multi-scale spatial maps, to uniformly represent the detected re-

sults. (3) We propose a new framework that combines evidences

from multiple channels via semantic fusion. (4) To facilitate this

study and to promote future efforts towards image-based event

recognition, we construct a large dataset comprised of nearly

60, 000 images annotated with event classes. The dataset can

be found in the project website listed in the supplementary ma-

terials.

The rest of the paper is organized as follows. Section 2 pro-

vides a brief review of related work. Section 3 introduces a new

dataset for image-based event recognition, called WIDER. Sec-

tion 4 discusses the proposed framework in detail. Section 5

presents the experimental results. Finally, we conclude this pa-

per in Section 6.

2.2 Related Works

Event recognition is a very active area in computer vision [105].

Most existing methods rely on videos to recognize events [14],

with emphasis placed on the use of dynamics and temporal
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relations [84, 4]. These methods generally fall in three cate-

gories: feature-based [14, 91, 71], concept-based [100], and model-

based [31, 103]. Recently, Duan et al.proposed a new method [16]

that utilizes web images to help video-based event recognition.

Despite the technical differences among these methodologies,

they all rely heavily on using the dynamics extracted from videos

and therefore can not be directly applied to static images.

Understanding of still images is an active field of research.

Efforts on holistic scene understanding [67] are also related to

this work, as they both target high-level interpretations of given

images. Yet, essential differences exist. Prior work on scene

understanding mainly considers visual patterns, with relatively

less attention to human activities, which, however, are a key

factor in event analysis. In this paper, we take into account

this factor through a dedicated channel and derive a novel way,

namely multi-scale maps, to incorporate it.

Analyzing human actions [33] with the help of human pos-

es [104, 58] and human-object interactions [12, 106] also provides

significant cues in recognizing certain categories of events. How-

ever it is worth to note that the events we investigate here are

usually characterized by combinations of multiple aspects, in-

cluding background appearance, spatial patterns of people, and

their interactions. Hence this work is related but different from

recognizing actions of individuals.

Among previous work on image understanding, a CRF-based

method proposed by Li and Fei-fei [50] that jointly infers the
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classes of event, scene, and objects is perhaps the most related.

This method couples two LDA models formulated directly upon

low-level features, and therefore lacks the capability of captur-

ing complex variations and bridging the semantic gap. It is also

worth noting that many previous methods [51] require train-

ing sets with detailed annotations (e.g. object bounding boxes),

which are often very costly to obtain. On the contrary, our

method only needs training images labeled with event classes,

making it particularly appealing to large-scale applications.

A key strategy adopted in this work is to combine informa-

tion from multiple channels. This strategy has been widely used

in previous work. In conventional frameworks, the fusion of

channels is usually accomplished by combining features [53] or

optimization objectives [54]. A limitation of these approach-

es is that they are not able to exploit the relations among the

constituent elements of different channels. Following the recent

success of deep models [41, 57, 17], attempts [79, 62] have been

made to connect multiple modalities through deep networks. In

recent work, auxiliary channels, such as depth [29] and optical

flow [75], are captured using additional networks. It is worth

emphasizing that depth maps or optical flows are both spatial

maps by nature and thus it is relatively easy to construct C-

NNs thereon. However, incorporating external detectors that

produce bounding boxes is not as straightforward. In this work,

we develop a novel method, namely the multi-scale maps, which

provides a principled solution to this problem. This method en-
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ables us to directly draw on state-of-the-art detectors [24, 13, 49]

for improving the overall recognition performance.

2.3 WIDER: A New Dataset

Datasets are an important force in driving the advancement in

a research area. Whereas there have been plenty of dataset-

s for object recognition [73], scene understanding [101], and

video-based event recognition [66]. A dataset to support the

research on image-based recognition remains needed. Along

with this work, we constructed a large dataset from web images,

called Web Image Dataset for Event Recognition (WIDER). This

dataset contains 60, 000 images of 60 event classes, where the

numbers of images in different classes are balanced. All images

have been carefully annotated with event labels, which can be

used for model training and performance evaluation. Figure 3.1

show some examples of the data. We can see that the dataset

comprises a diverse set of event categories and there exist sub-

stantial variations in visual patterns among the images within

each category. We will make the dataset available to the public

following the publication of this paper in order to foster future

research on this topic.

Construction of this dataset took a lot of efforts. This course

is comprised of three stages:

Selecting event categories. A majority of the event categories

are from the Large Scale Ontology for Multimedia (LSCOM) [60],
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which provides a list of around 1, 000 concepts relevant to video

event analysis. Many of these concepts are the names of objects

or low-level actions. Hence, we manually go through the list,

picking those representing event classes while filtering out the

others. We also noticed that the concepts in LSCOM are pri-

marily from TV news, and consequently events in personal lives

were not thoroughly covered. To enrich the dataset, we invited a

group of students to propose activities related to their daily lives

and find a number of new categories therefrom, e.g. car-driving.

Altogether, we obtained 60 event classes.

Collecting images. We resorted to search engines like Google

and Bing to collect images. Specifically, we retrieve 1000 to

3000 images for each category using the class name as the input

query. We found that many images resulted from this process are

simply irrelevant. To obtain more qualified images, we adopt the

query expansion strategy. In particular, we acquire additional

queries for each event class by finding highly frequent phrases

from a variety of sources, such as WordNet, Wikipedia, and the

text snippets that come with the retrieved images. Using these

phrases as queries to expand the search substantially enrich the

pool of candidate images for building the dataset.

Screening data. The collection process above results in hun-

dreds of thousands of candidate images. In this pool, lots of

samples are cartoons or cliparts while many others are irrele-

vant to the events of interest. To clean the data, we first filter
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Dancing

Press 
Conference

Meeting

Figure 2.2: Examples of several categories in the WIDER dataset, which

exhibit diverse visual patterns.

out cartoons, cliparts, and blank images using bilateral filter-

ing1. Then we asked human annotators to identify irrelevant

images in the remaining set. To expedite this process, we devel-

oped a GUI tool, where the images are grouped into pages and

hence the annotator can inspect 80 images at the same time. In

this way, we can process a large quantity of images very quickly

and reliably. The screening retained about 60, 000 images in the

dataset.

2.4 Fusing Multiple Information as Channels

Generally, an event can be considered as an activity taking place

in a certain environment. Hence, it can be reasoned from two as-

pects: (1) Environment: e.g. is it by the seashore or in a forest?

is there a large crowd of people? (2) Activity: e.g. is the man

running? are the people in the scene sitting together? Even-

t recognition, in essense, is a process to answer such questions

1The overall response of a bilateral filter can be used to test whether an image has

enough textures to be qualified as a real-world photo.
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Figure 2.3: Overall, this framework integrates two channels. The upper chan-

nel, devised to capture the visual appearance, is formulated directly upon the

input images; while the lower channel, devised to capture the interactions

among humans and objects, takes as input the results of three detectors,

respectively for faces, humans, and objects. In this channel, the bounding

boxes obtained by the detectors are projected onto multi-scale spatial maps,

which are then modeled by another CNN. On top of both CNNs, a fused

representation is introduced, which is linked to the top representations of

both networks, respectively via a fully-connected layer.

and arrive at a prediction by bringing the answers together.

Following this consideration, we develop a multi-layer frame-

work as shown in Figure 2.3. This framework is comprised of

two major channels, one is to model the observed visual pat-

terns, which are important for reasoning about the environmen-

t; while the other is to capture the interactions among humans

and objects, which are significant cues of the activity taking

place. Particularly, to ensure the reliability of detection, the

latter channel employs state-of-the-art detectors to locate the
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entities of interest (i.e. humans and objects), and subsequent-

ly uses spatial maps to express the distribution of the detected

results. This enables the use of deep models to capture the vari-

ations in their spatial configurations. These two channels are

combined through a semantic fusing layer, resulting in a fused

representation that captures the key semantic elements of the

image. In what follows, we will introduce these components in

detail.

2.4.1 Model Visual Appearance with CNN

We use a deep convolutional neural network (CNN) to model

the visual appearance of event images. In previous work [41],

CNNs have demonstrated excellent capability of capturing com-

plex variations in visual patterns. Here, we are interested in

studying how well they perform in higher-level tasks, e.g. event

recognition. Particularly, we adopt the architecture of AlexNet

presented in [41].

This network comprises eight layers, five convolutional and

three fully-connected, and takes as input a 3-channel color image

of size 224×224. The 1st, 2nd, and 5th convolutional layers are

each followed by a max-pooling layer to compress the inputs.

Each fully connected layer has 4096 neurons. The last layer is

linked to a multi-way softmax classifier with dense connections.

The settings of these layers follow [41]. The detailed model

specification will be provided in the supplemental materials.
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2.4.2 Find Humans with Complementary Detectors

We found empirically that humans appear in a majority of im-

ages in our dataset. This is not surprising. The interaction-

s among humans are often a key factor in defining an event.

However, locating humans from event images is very challeng-

ing. In such images, people are often occluded by one another,

and their facial appearance can be seriously blurred when they

are far away from the camera. There are also cases where faces

of some people are completely invisible, as they are facing to-

wards the opposite side. To tackle this problem, we combine

two complementary techniques: face detection and human de-

tection. As Figure 2.4 illustrates, this strategy can substantially

increase the chance of successful detection even under adverse

circumstances – when one technique fails, the other can come to

rescue.

Specifically, we use the SURF cascade presented in [49] for

face detection. This method uses multi-dimensional SURF fea-

tures for describing local patches together with an improved

weak classifier for boosting, thus significantly increasing the run-

time efficiency without compromising the accuracy. For human

detection, we employ the ACF detector developed in [13], which

uses a feature pyramid for multi-scale detection with an approx-

imation to speed up the computation. Both detectors are highly

efficient and thus are suited for large-scale applications.
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Face            Human Face            Human

HumanFace            HumanFace            

Football Game

Running Surgery

Couple Photo

Figure 2.4: The face and human detectors are complementary. In case one

detector fails, the other tends to find out the missed humans in image.

2.4.3 Multi-scale Spatial Maps

Detectors output bounding boxes. Each bounding box is repre-

sented by a 4-tuple comprised of the corner coordinates. These

boxes contain rich information about the event, which, for exam-

ple, include the spatial distribution of entities and their geomet-

ric relations i.e. relative location and size. However, a question
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arises here: how can CNNs understand the bounding boxes? This

problem is not as trivial as it seems to be. Simply concatenating

the coordinates of all bounding boxes does not yield a sensible

representation.

Our idea to tackle this problem is simple. Since the primary

message conveyed by these bounding boxes is the spatial con-

figuration of the entities, to get this message, we can project

the boxes onto a spatial map. Here, a spatial map is a binary

image with the elements covered by detected objects set to one.

However, there is an issue with this approach. Consider the two

images in Figure 2.5, one containing a group of people, while

the other containing two larger faces that cover a similar region.

While these images represent very different events, one cannot

distinguish them by inspecting their spatial maps.

Here, we propose a solution – multi-scale spatial maps. In-

stead of using a single channel to capture all detected entities,

we expand the map into multiple channels, each for a scale level,

so that entities of different scales will be reflected by different

channels. In particular, we use a multi-scale spatial map com-

prised of three scale channels to represent the detected faces,

where each channel is a binary map of size 18× 18. We use two

scale thresholds τ1 and τ2 with τ1 < τ2 to determine the choice of

channels. Given a bounding box, we normalize its coordinates

w.r.t. the 18 × 18 frame and compute its area a. If a < τ1, we

project it to the 1st channel, setting all the covered elements of

this channel to one. Otherwise, we project it to the 2nd or 3rd
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Event: Group Photo Event: Couple Photo

Figure 2.5: Here is an illustration of multi-scale spatial maps. Over these

two images, the face detector produces bounding boxes of different sizes.

Spatial maps resulted from the projection of these boxes are difficult to be

distinguished from each other. However, when boxes of different sizes are

projected onto different channels (L, M, and S), the distinction between these

maps becomes much more obvious.

channel, depending on whether a < τ2 holds.

Likewise, we can apply this multi-scale representation to ex-

press the results obtained from the human detector. Altogether,
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we have a spatial map with 6 channels, 3 for faces and the other

3 for human bodies. This method not only provides a unifor-

m representation that can be readily handled by higher level

models, e.g. CNN, but also makes it possible to differentiate the

spatial configurations at different scales, e.g. crowded gathering

vs. private conversation.

2.4.4 Detect and Characterize Objects

Besides humans, the presence of objects of certain categories is

often a strong indicator of some event classes. Figure 2.6 uses

several examples to illustrate this relation. In this paper, we use

R-CNN [24], a state-of-the-art technique in object detection, to

locate objects of interest.

The R-CNN method consists of three steps. First, it requires

object candidates to be generated. For this purpose, we use a

latest technique, called Edge boxes [111], which is much more

efficient than the standard selective search algorithm [87]. On

average, Edge boxes takes 0.25 second to process an image, while

selective search takes about 10 seconds. Subsequently, a 4096-

dimension CNN feature is derived for each candidate, which is

then fed to SVMs to predict whether it belongs to specific ob-

ject classes or not. Finally, a greedy non-maximum suppression

procedure is applied to filter out redundant candidates.

We observed objects of thousands of different classes in our

dataset. Many of them, however, are irrelevant to event under-
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Figure 2.6: Existence of significant objects indicates the event categories.

For example, the presence of horses and helmets is a strong indicator to the

class Jockey.

standing. To choose the ones that are truly pertinent to our

task, we run a large collection of object detectors over a sub-

set of event images, and select the 30 most frequently occurring

classes2.

Again, we use spatial maps to express detected objects. Un-

like humans, we have a number of object classes but the presence

2The number of object classes was determined using cross validation. We found the

risk of overfitting to be higher as we use more object classes.
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of a specific object class is generally quite sparse. Hence, we use

class-specific maps instead of multi-scale maps for general ob-

jects (except humans). In particular, we construct a spatial map

with 30 channels, each for an object class. When an object is

detected, the bounding box will be projected onto the corre-

sponding channel. This representation enables one to exploit

the interactions among objects, e.g. co-occurrences of objects of

different categories.

2.4.5 Channel Fusion

Stacking the spatial maps for faces, humans, and objects, we

obtain an integrated spatial map with 36 channels, each of size

18×18. We construct a convolutional network thereon to derive

a higher-level representation. Through a series of empirical ex-

periments, we obtain an architecture suitable for modelling such

spatial maps. This architecture comprises two convolutional lay-

ers. The first layer filters the inputs with 64 kernels, each of size

3 × 3 × 36, producing an output of size 18 × 18 × 64. This is

followed by a max-pooling layer that compresses the result in-

to an array of size 6 × 6 × 64. The second convolutional layer,

with 128 kernels of size 1 × 1 × 64 is then applied, yielding an

output of size 6× 6× 128. Here, the first convolutional layer is

to exploit the spatial interactions among neighboring parts and

the co-occurrence patterns of different entities, while the second

layer is mainly to adjust the relative contribution of different
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channels. The output of the second layer is then linked to a

representation layer via a fully-connected network, resulting in

a 4096-dimensional vector to capture the information derived

from the detectors. Note that the detection channel needs less

layers compared to the network for visual appearance. This is

partly due to the reason that the detectors perform a series of

visual analysis internally, which already narrows the semantic

gap to some extent.

The visual appearance channel and the detection channel re-

spectively yield a 4096-dimensional representation at the top.

Through the computation across multiple layers, these repre-

sentations are abstracted away from the low-level variations and

thus are more consistent in expressing the semantics. To inte-

grate both aspects, we further introduce a semantic fusion lay-

er, which is linked to the top layers of both channels via dense

connections, and thereon derive a 4096-dimensional fused rep-

resentation. Like in other discriminative networks, this fused

representation will be linked directly to the event classes via a

softmax layer.

2.4.6 Training Algorithms

At the training stage, the CNN of the first channel was pre-

trained on ImageNet [41]. This relives the over-fitting problem

of deep models in the sense that natural images share similar

low-level features. For the CNN of the second channel, the

weights were randomly initialized from a zero-mean normal dis-
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Table 2.1: Class averaged recognition accuracy.

Method Top-1 Accuracy Top-5 Accuracy

Gist [65] 13.8% 34.6%

SPM [45] 26.8% 47.2%

RCNNBank 37.7% 62.5%

CNN [41] 38.5% 65.5%

FCNN+H 42.1% 67.3%

FCNN+H+O 42.4% 67.5%

tribution. After initialization, the entire framework is jointly

trained using stochastic gradient descent. Training strategy like

data augmentation, weight-decay, and dropout are also used to

alleviate over-fitting. The learning rate is initialized at 0.001 for

the pre-trained CNN, while the learning rates of the two convo-

lutional layers for the second channel are set to 5 and 2 times

the base rate.

2.5 Experimental Results

We conducted experiments on the WIDER dataset (described

in Section 2.3) to evaluate the proposed method and compare it

with representative methods on image classification. The entire

dataset, which contains 60, 000 images in 60 classes, is randomly

divided into two disjoint halves, one for training and the other

for testing.

We tested our method under two settings: “FCNN+H” and

“FCNN+H+O”. The former is a simplified version where the de-
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Table 2.2: Comparison of per class recognition accuracy. To save space, we

only show abbreviations of category names here. We compare the accuracy

of FCNN with the original fine-tuned CNN on these categories. With the

help of spatial detection maps, accuracies on 40 out of 61 categories have

been improved.

Para. Hand. Demo. Riot Danc. CarA. Fune. Chee. Elec. Pres.

CNN .412 .322 .572 .141 .221 .630 .295 .249 .171 .502

FCNN+H+O .500 .308 .631 .219 .207 .679 .373 .232 .171 .525

Peop. Meet. Group Inte. Traf. Stoc. Awar. Cere. Conc. Coup.

CNN .160 .534 .266 .239 .541 .393 .314 .306 .276 .337

FCNN+H+O .162 .555 .269 .273 .524 .393 .400 .301 .359 .366

Fami. Fest. Picn. Shop. Sold. Sold. Sold. Spa Spor. Stud.

CNN .271 .262 .617 .297 .295 .457 .158 .666 .167 .122

FCNN+H+O .366 .309 .637 .304 .313 .512 .203 .672 .200 .146

Surg. Wait. Work. Runn. Base. Bask. Foot. Socc. Tenn. IceS.

CNN .567 .585 .229 .498 .590 .645 .587 .523 .643 .580

FCNN+H+O .612 .591 .326 .529 .596 .647 .580 .573 .663 .630

Gymn. Swim. CarR. RowB. Aero. Ball. Jock. Mata. Para. Gree.

CNN .631 .652 .774 .670 .389 .348 .268 .725 .440 .141

FCNN+H+O .637 .642 .807 .718 .400 .345 .328 .791 .494 .157

Cele. Dres. Phot. Raid Resc. Spor. Voter Angl. Hock. Peop.

CNN .364 .617 .267 .254 .231 .104 .091 .444 .608 .429

FCNN+H+O .405 .615 .310 .308 .259 .125 .125 .415 .608 .410

Stre.

CNN .115

FCNN+H+O .124
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Figure 2.7: Average recognition accuracy by percentages.

tection channel only uses the results of face & human detection,

while the latter is the full version with both humans and objects

taken into account. We also compared it with “Gist” [65], “S-

patial Pyramid Matching (SPM)” [45], “ObjectBank” [52], and

“CNN” [41]. These methods have been widely adopted in prac-
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tical systems. Note that when we implemented ObjectBank, we

made an important improvement, using the responses of R-CNN

instead of the original SVM detectors. This change, which we

call “RCNNBank”, leads to much better performance.

For all these methods, we learned the model on the training

set and assessed them on the testing set. The performance was

evaluated in terms of top-1 and top-5 accuracies. Specifically,

each method was used to predict a ranked list of class labels

for each testing image based on classification scores, which is

then compared with the ground-truth. If the ground-truth is

within top k positions of the list, we call the prediction top-k

accurate. Then, top-k accuracy is defined to be the fraction of

top-k accurate predictions.

Comparison of results. The performance is compared in Ta-

ble 2.1 and Figure 2.7. The results show that methods using

deep learning techniques outperform all others, i.e. Gist and

SPM, by a large margin. This, again, demonstrates the superior

capability of deep models in capturing complex visual variations

as compared to traditional techniques. More importantly, our

framework, with the detection channel incorporated, takes this

capability to a next level, significantly improving the classifi-

cation accuracies. Compared to CNN, the top-1 accuracy in-

creases from 0.385 to 0.424 – the gain is over 10%. This result

corroborates with our intuition that the detection channel con-

veys complementary information and that the multi-scale maps
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Figure 2.8: Successful and failed prediction examples on the testing set.

Misclassified samples are shown with their ground-truth categories.
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provide an effective means to utilize such information. Also, the

use of face and human detectors makes up for the weakness of

appearance-based CNN in object localization.

Table 2.2 offers class-specific comparisons. For 40 out of 60

classes, our method outperforms CNN [41]. For those classes

where humans play a crucial role, the gain is remarkable. For

example, the top-1 accuracies are nearly doubled for classes like

“Marching (Marc.)” and “Couple Photo(Coup.)”. Figure 2.8

presents some successful and failed predictions of our model.

Taking a closer look here, we can see that this model is able to

identify images relevant to the same event in spite of the large

variations in their visual appearance. On the other hand, many

of the examples that are incorrectly classified tend to be easily

confused, as the “true” classes and the predicted classes of these

examples often look very similarly.

Contribution of object detection. Compared to the significant

improvement due to the use of face and human detection, the

performance gain brought by the object channels doesn’t seem to

be as notable. When investigating this issue, we found that non-

human objects are only detected in about one-fourth of the im-

ages. Particularly, out of all the testing images, about 7100 con-

tain detected non-human objects. We specifically evaluated the

performance on this subset, and observed greater performance

gain due to the object channels, as shown in Table 2.3. We

note that the effectiveness of the object channels hinges largely
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Table 2.3: Performance comparison on the “with-object” set.

Method CNN FCNN+H FCNN+H+O

Top-1 Accuracy 45.56% 48.9% 49.6%

Top-5 Accuracy 71.4% 73.6% 75.3%

on the performance of the object detectors. While the R-CNN

detectors [24] already represent the state-of-the-art, the overall

performance remains quite limited (with AP at 31.4%). How-

ever, the computer vision community is making steady progress

in object detection [73]. It is reasonable to believe that with

better detectors, we can see even greater improvement with the

use of object channels.

Run-time performance. We implemented the framework based

on Caffe [36], a popular programming platform for deep learn-

ing. The training phase involves preprocessing (detecting hu-

mans and objects) and parameter learning. A majority of the

computation is performed on GPU. With a GTX Titan, it takes

about 3 seconds on average to preprocess an image, and 3 hours

to train the deep networks over the entire training set with about

30, 000 images. Given a new image, it also takes about 3 sec-

onds to preprocess. Compared to preprocessing, the time needed

to make the prediction is negligible (about 2.4 milliseconds per

image).
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2.6 Discussion and Summary

In this part of thesis work, a new framework is proposed for

recognizing complex events from static images. This framework

integrates evidences from a visual appearance channel and a de-

tection channel, both via deep convolutional networks, to pre-

dict the event class for a given image. It is particularly worth

noting that we use multi-scale spatial maps in expressing the

results obtained from dedicated detectors, thus enabling the use

of higher-level models, e.g. CNN, to capture the spatial config-

urations of objects and their variations.

The experiments over a large dataset clearly demonstrat-

ed the effectiveness of the proposed method. In particular,

our method achieves notable improvements over state-of-the-art

visual recognition techniques, increasing the accuracy by over

10%. This clearly demonstrate the power of our approach by

adopting the idea of combining multiple aspect of data. It opens

encourage future efforts which ventures through this direction.



Chapter 3

Recognize Multiple Concepts

from Images

In the event recognition tasks, each image is only assigned one

class label. However, our visual world is full of information and

changes. This necessitate a system to produce multiple labels

for one input image. Multi-label image tagging is the exact task

that deals with this problem. It also serves as a good sample of

how combining multiple aspect of data can improve a specific

high-level visual understanding system. We develop a new image

tagging framework suited for large-scale real-world applications,

particularly aiming at two key challenges that are often ignored

in prior works: (1) a tag may be relevant to a local region instead

of the entire image; and (2) the large number of tags would lead

to difficulties in scaling. By enforcing the strategy of combin-

ing multiple aspect of data, the proposed techniques results in

superior tagging performance and higher learning efficiency as

compared to the state-of-the-art.

36
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Figure 3.1: Illustration of our approaches. Note the rich information can be

obtained by contrasting between the shown images, even though they share the

same tag, dancing. For each image, we devise the scaled-view integration technique

to tackle the problem of local association, where tags refer to local regions of of

different sizes/scales.

3.1 Image Tagging in the Wild

Years of practice in image organization and sharing suggests

that tagging is an efficient way to manage images. Many online

photo sharing services, such as Facebook, Instagram, and Flickr,

allow users to provide tags to photos. However, a substantial

portion of the images remain untagged, as many see this as an

extra burden. Even for those images with user-provided tags,

the tags are usually incomplete, noisy, and unreliable. Driven by

such real-world demands, automatic image tagging has attracted

increasing attention from the computer vision community over

the past decades, resulting in numerous techniques [56]. Recent

advances in deep learning [42] also inspires a wave of new efforts

that attempt to bring the power of deep neural networks to this

area, leading to significant improvement in performance [26].

However, it is worth noting that existing methods mostly
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rely on a common but implicit assumptions: a moderate list of

tags is prescribed in advance and these tags generally describe

an entire image or a dominant part thereof. Such techniques

often face serious difficulties when used in real-world settings,

where this assumption is far from the reality. Our primary goal

is to develop a new image tagging framework that can meet

the demand of real-world applications by moving beyond this

limitation.

Towards this goal, a significant challenge that we face is the

issue of spatially local association. In real-world practice, an

image is often attached with multiple tags – some describing the

overall scene while others referring to local regions, as shown in

Figure 3.1. To tackle this problem, we propose a new strategy

called Scaled View Integration (SVL), which explicitly models

the associations between tags and local regions, while allowing

feature representations across locations and scales to be jointly

learned.

Another real-world challenge consists in the large tag space.

Many discriminative models [26] require each sample to be com-

pared with all the tags in every update, leading to the com-

plexity that increases linearly as the tag space grows and thus

limited scalability. However, this is generally not necessary –

our study shows that comparing each sample over a subset of

tags usually provides sufficient contrastive information for learn-

ing an effective representation, especially when the tag space is

large. We thus formulate a novel learning objective called Con-
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trastive Bundle Loss (CBL), where each loss term is defined on

a group of samples combined with a subset of tags, instead of

individual samples over the entire tag space. This formulation

improves the discriminative performance by contrasting across

both tags and samples, while maintaining strong scalability –

each iteration has a constant complexity regardless of the tag

space.

Overall, the major contribution of this work is an image tag-

ging framework that tackles two key challenges in real-world

applications, namely spatially local association and large tag s-

pace, through the combination of Scaled View Integration and

Contrastive Bundle Loss. Experiments on both NUS-Wide [10]

and YFCC [85] showed that this framework achieves improved

tagging accuracy as compared to the state-of-the-art, while pro-

viding superior scalability.

3.2 Related Works

Automatic image tagging has been an active research topic in

computer vision [56]. It’s been generally treated as a multi-

label classification problem [2, 6, 28, 48] since machine learning

was introduced to this task. Simple strategies such as neighbor

voting [55] has also been widely used in practice to solve the

problem The recent success of Convolutional Neural Network

(CNN) [42] motivated the use of deep models for image tag-

ging [26], which yields considerable performance improvemen-
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t. Besides the evolution of underlying visual models, another

stream of efforts towards improved tagging is the study on uti-

lizing metadata [39, 32, 8, 98, 59].

As mentioned, the proposed framework comprises two com-

plementary components: Scaled-View Integration and Contrastive

Bundle loss. Below, we briefly review the relations between these

components and existing work.

The Scaled-View Integration scheme is partly inspired by Spa-

tial Pyramid Matching (SPM) [46], a classical technique in visual

recognition, and aims to combine the local sensitivity of SPM

with the power of CNN to tackle the issue of spatial local asso-

ciation. Note that there have been existing attempts [30, 25, 27]

to integrate SPM and CNN, so as to exploit information across

scales and locations. For example, SPPNet [30] proposes an

computational efficient approach, called spatial pyramid pool-

ing, to pool the feature maps extracted from one image over

local windows of different scales. It is important to note that

the pyramid pooling was considered after CNN features have

already extracted. However, with SVI, we take into account the

effect of scaling from the ground up, and jointly learn the con-

volutional coefficients across scales via an end-to-end learning

scheme.

The Contrastive Bundle loss provides a flexible formulation

on which losses can be defined over multiple samples in run-

time. This relates to several other formulations for discrimina-

tive learning, including the pairwise and triplet contrastive losses
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that have been widely used in face verification [83, 74] and image

retrieval [92, 7, 68], as well as the siamese network [9]. These

formulations can be considered as special cases of the proposed

formulation, where the numbers of samples within each bundle

and the choices of loss functions are subject to certain settings.

In this work, improved versions of the softmax loss [3] and the

weighted approximate ranking loss (WARP) [99] are implement-

ed on this formulation, which promote contrasting across both

classes and samples.

While the proposed components are partly inspired by previ-

ous work, they are motivated differently and use new strategies

to break the limitations of existing work. More importantly,

the two techniques, focusing respectively on visual analysis and

learning, together constitute a unified framework to tackle the

challenges in real-world image tagging that none of the exist-

ing work address at the same time, consequently bringing the

state-of-the-art to a new level.

3.3 Combining Scale, Locations, and Cate-

gories in Learning Process

Generally, image tagging can be considered as a task of assigning

a set of semantically relevant tags to a given image. Unlike image

classification where each image belongs exclusively to one class,

image tagging allows each image to be associated with multiple

tags.
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In spite of the substantial progress over the past decades, au-

tomatic tagging in real-world applications remain a challenging

task. Particularly, several issues in real-world practice have not

been sufficiently explored in previous study, such as the associ-

ation between tags and local regions and the scalability with a

large tag space. This work introduces two complementary tech-

niques, Scaled View Integration and Contrastive Bundle Loss, to

tackle these problems.

3.3.1 Scaled-View Integration

Visual recognition is crucial to image tagging. In recent years,

the use of Convolutional Neural Networks (CNN) has led to re-

markable improvement in recognition performance [42]. Where-

as state-of-the-art CNNs, e.g. those pre-trained on ImageNet [42],

can effectively recognize dominant objects at the center, it re-

mains very challenging to handle variations in location and scale.

In real-world image tagging, an image can have multiple tags,

some describing the whole scene while others referring to smaller

local regions. This issue, which we call local association, posts a

significant challenge. In particular, it requires a tagging system

to robustly recognize visual patterns at different locations and

of different scales.

A natural way to tackle this issue is to use a spatial pyra-

mid [46]. For example, one can adapt the SPPNet [30] to image

tagging by pooling the outputs from convolution layers. It is
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important to note that SPPNet derives the feature representa-

tion at the input scale, and performs the pyramid-based pooling

over the feature responses afterwards. In other words, the ef-

fect of scaling is not taken into account when the CNN features

are extracted. This may not be an important issue if the CNN

features are stable against scale changes, however, it is not the

case as observed in previous work [27, 25].

2

3

4

conv1 conv2 conv3 conv4 conv5 pool5 fc6 fc7 fc8

Figure 3.2: A heat map demonstrating the impact of the input scale on the

output CNN features. Each cell in this map indicates the cosine similarity

between the outputs (of a specific layer) corresponding to certain input scale

(2x ∼ 4x) and that corresponding to the original scale. Darker colors reflect

stronger similarities. It can be observed that the similarity drops significantly

as the scales diversify.

Effect of scales. To study the effect of input scales, we con-

ducted a simple quantitative experiment. In this experiment,

we feed a CNN with inputs of different scales, ranging from one

to four times of the original size, and investigate the stability of

the output. We compare the outputs of different layers obtained

with rescaled inputs with those obtained from the original in-
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puts and measure the distances between them. Figure 3.2 shows

that scale changes result in remarkable differences in the output.

The differences also increase as we move from bottom layers to

top layers. The findings from this study clearly suggests that

CNN features are sensitive to input scales, and therefore pool-

ing the feature responses as in SPPNet [30] is not an effective

strategy to handle scale changes.

Integrate multi-scale views. We propose a new model archi-

tecture that can jointly handle multiple local regions of different

scales, while maintaining high run-time efficiency. The pipeline

consists of two stages. In the first stage, each input image is

resized to multiple scales. The size of an image at the k-th scale

is kw × kh. The resized image can then be divided into k × k
local regions, each providing a “zoom-in” view of a local region.

These zoom-in views at different scales can then be stacked in-

to a tensor that serves as the input to the CNN, as shown in

Figure 3.3, thus allowing local regions of different scales to be

jointly analyzed at the same time.

Specifically, let I be an input image resized to a standard

size h × w, and Vk,i be the i-th local view at the k-th scale.

Then Vk,i covers a local region of size (h/k)× (w/k) in I that is

resized to h×w. With these views stacked into a tensor, a CNN

network with weights W can be applied jointly to derive features

from all these views, denoted by f(Vk,i; W). We then combine

the features of each scale by average pooling, concatenate the
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pooled features of all scales, and finally obtain the integrated

representation f(I) as

f(I) =

f(V1,1; W), . . . ,
1

K2

K2∑
i=1

f(VK,i,W)

 . (3.1)

Here, K is the number of scales used in the model.

Discussion. The model architecture introduced above address-

es the issue of local association by integrating the local views at

different locations and of different scales. Unlike in SPPNet,

this model explicitly handles the effect of scaling in the feature

extraction stage, while allowing the CNN weights to be jointly

optimized over all local parts in a single batch. We will see in

the experiments that that this approach produces more effective

representation for image tagging.

3.3.2 Contrastive Bundle Loss

In supervised learning, a loss function is usually used to evaluate

the feature representation x of a sample against the correspond-

ing class label c. Particularly, the Softmax loss defined below is

among the most widely used.

Lsoftmax(x, c) = log

(
M∑
k=1

exp(wT
k x)

)
−

M∑
k=1

y(k)wT
k x. (3.2)

Here, M is the number of classes, the wk the weight vector for

the class k, and y the class indicator with y(k) = I(k = c). The

effectiveness of the softmax loss has been repeatedly proven in
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(a) Scale-View Integration
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(b) Bundle Loss

Figure 3.3: The framework of our proposed approach. In the training, the

images are inputed in minibatches. One image will be going through the

scale-view integration process illustrated in (a) to be transformed into a fea-

ture vector. Then our contrastive bundles are sampled on the minibatch and

produce loss values and supervision signals, as shown in (b). The system

can be learned ene-to-end with minibatch SGD. Flow of gradients during

back-propagation is marked with green arrows in (a).
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previous work. A key rationale underlying this loss function is

contrasting, that is, to encourage high responses to the correct

predictions, while suppressing the responses to others.

However, it is worth noting that such loss functions generally

require every training sample to be evaluated against all classes.

Hence, the computational complexity of the loss would increase

linearly as the number of classes M increases, which would lead

to serious difficulties in large-scale applications, e.g. web-scale

services, where M can be extraordinary.

Bundles. In response to this challenge, we propose a novel for-

mulation called K-bundle. Formally, a K-bundle, denoted by

B(D, C), is a small group of samples combined with a small sub-

set of distinct tags. Here, D is a small group of K samples and C
is a subset of K tag classes. Each sample in a bundle comprises

a feature vector xi and a restricted tag indicator yi ∈ {0, 1}K .

Particularly, y
(j)
i indicates whether xi is relevant to the j-th tag

in C.
Compared to the conventional each-sample-vs-all-classes paradig-

m, this bundle formulation has two key advantages: (1) Strong

scalability. The design parameter K is independent of the num-

ber of samples in the training set or the number of classes in

the tag space. Our experiments show that, a relatively small K,

say 32 to 128, is enough for a large tag space. Consequently,

algorithms that use bundles as units for learning can maintain a

stable complexity even when the number of tag classes increases
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substantially. (2) High flexibility. This formulation allows vari-

ous objective functions to be formulated thereon. Particularly,

by grouping multiple samples, it allows new loss functions to be

formulated over groups of samples, and promote contrast among

them. Below, we present two loss functions defined on a bundle.

Restricted Dual-Softmax Loss. As mentioned, the softmax loss

has been proven to be effective in discriminative learning. On

top of a bundle B, we extend the softmax loss to encourage

contrast among both samples and tag classes:

LRDS(B) , −

 1

K

K∑
i=1

1

t+i

K∑
j=1

y
(j)
i log p

(j)
i +

1

K

K∑
j=1

1

s+j

K∑
i=1

y
(j)
i log q

(i)
j

 . (3.3)

Here, i and j are respectively the indexes of samples and tags
within the bundle B, t+i the number of tags in B that are asso-
ciated with the i-th sample, and s+

j the number of samples in B
that are relevant to the j-th tag. We explicitly enforce that each
sample must be associated with at least one tag and each tag
must be associated with at least one sample when constructing
a bundle. Hence, t+i and s+

j are always positive. In addition,

p
(j)
i and q

(i)
j are defined as:

p
(j)
i =

ew
T
j xi∑K

j′=1 e
wT

j′xi
, and q

(i)
j =

ew
T
j xi∑K

i′=1 e
wT

j xi′
. (3.4)

With this definition, the loss in Eq.(3.3) can be written as

K∑
i=1

log

 K∑
j=1

ew
T
j xi

+
K∑
j=1

log

(
K∑
i=1

ew
T
j xi

)
−

K∑
i=1

K∑
j=1

y
(j)
i

(
1

t+i
+

1

s+j

)
wT

j xi. (3.5)

This function operates across samples and classes, while re-

stricts the focus to only a subset of K classes. Hence, we call it

Restricted Dual-Softmax Loss.
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Restricted Dual Ranking Loss. The weighted average ranking

loss (WARP) [99] is another important loss function for dis-

criminative learning, defined as

LWARP (x) =
1

|T +|
∑
j∈T +

∑
j′∈T −

ωj max
(
0, 1−wT

j x + wT
j′x
)
. (3.6)

Here, T + and T − are the sets of all positive and negative tags

w.r.t.to the sample x; ωj is a weight assigned to each positive

tag. The weight ωj, usually in the form of

ωj =
1

rj

rj∑
i=1

1

i
, (3.7)

adjusts the contributions of different estimated rank r to the

overall loss. Note that in [26] the normalizing term 1/rj is omit-

ted, which we found empirically causes instability in learning.

Similar to SVM, this loss encourages large margin between class-

es, and has been shown to be very effective in certain tasks.

Again, this function would face scalability issues when used

with a large tag space, as it requires the comparison between all

pairs of positive-negative tags for each sample. To tackle this, we

formulate a restricted version over a bundle B as below, called

Restricted Dual Ranking Loss.

LRDR(B) =
1

K

K∑
i=1

1

t+i

∑
j∈T +

i

∑
j′∈T −i

ωj max
(
0, 1−wT

j xi + wT
j′xi

)
+

1

K

K∑
j=1

1

s+
j

∑
i∈S+j

∑
i′∈S−j

ω′i max
(
0, 1−wT

j xi + wT
j xi′

)
.

(3.8)
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Here, T +
i and T −i are the sets of relevant and irrelevant tags for

sample i within the bundle, S+
j and S−j are the sets of positive

and negative samples for tag j within the bundle. The sample-

wise weights ω′i can be estimated in the same way as estimating

ωj, except that it is along the direction of samples.

Summary. Both new loss formulations differ from their origi-

nal counterparts in three aspects: (1) The complexity depends

only on the design parameter K instead of the tag space size.

Our experiments show that a moderate value of K is enough to

handle a large tag space. (2) With multiple samples bundled to-

gether, they can encourage contrast among samples in addition

to tag classes, thus further enhancing the discriminative power.

(3) Both loss functions allow multiple tags to be associated to a

sample.

3.4 Experiments

We tested our approaches on large datasets, and compared them

with other approaches on a number of performance metrics. We

investigated not only the tagging performance, but also the al-

gorithm’s scalability.

3.4.1 Experiment Settings

Data sets. We conducted tests on two public datasets, NUS-

WIDE [10] and YFCC100M [85]. NUS-WIDE [10] is widely
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used for evaluating image tagging methods. This dataset pro-

vides a list of URLs to images from Flickr. As of the time we

started this project, 110, 389 images remain downloadable. Each

image is attached with zero to multiple ground-truth tags, cho-

sen from a curated list of 81 distinct tags. With all those without

ground-truth tags excluded, there remain 86, 374 images, which

we used in our experiments. Totally, there are 213, 219 tags for

these images, 2.47 for each on average. We divide these images

into two disjoint halves, 80% for training and validation, and

the other 20% for testing. The tag distribution in NUS-WIDE

is highly imbalanced, the most frequent tags can be present hun-

dreds of times more than the less frequent ones.

YFCC100M [85] was recently released by Yahoo! to promote

large-scale vision research. It contains around 99.2 millions of

images from Flickr, some of which come with user tags and oth-

er metadata. We construct a benchmark from YFCC100M for

evaluating tagging performance as follows. First, from all associ-

ated user tags, we identify a list of 2000 most frequent ones, and

then remove those irrelevant to semantic understanding, such as

device brands (e.g.“Canon”) or places (e.g.“New York”). This

results in the final list of 997 distinct tags. Based on these tags,

we sample a subset of 397, 435 relevant images, each associated

with at least one of the tags in the chosen list. Over this subset,

there are over 3 million tags, about 7.78 tags for each image

on average. From these images, we selected 367, 435 for train-

ing and validation and the other 30, 000 for testing. Due to its
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broader range of tags and closer relation with real-world photo

sharing practice, we argue that it is more suitable for assessing

the practical performance of a tagging method.

Methods for comparison. The baseline methods that we com-

pared with are CNN models combined with three different loss

functions: (1) Sigmoid : per-tag sigmoid cross entropy loss, which

is equivalent to per-tag logistic regression. (2) Softmax : the loss

usually used in image classification [42], (3) WARP : weighted

approximate ranking loss, as presented in [26]. We also com-

pare with Neighbor voting based on visual features, which is

often used in image tagging practice. In this experiment, we

tested neighbor voting with features learned with SVI equipped

CNN for fair comparison.

For the proposed framework, we tested different configura-

tions. Particularly, we studied the settings with and without

Scaled View Integration (SVI), as well as different choices of

Bundle Losses, including Restricted Dual Softmax Loss (RDSL)

and Restricted Dual Ranking Loss (RDRL), in order to investi-

gate their respective contributions to the tagging performance.

As mentioned, SVI is different from Spatial Pyramid Pooling

(SPP) in an important aspect: SVI takes into account the s-

caling effect in feature extraction by extracting features jointly

over multiple local views while SPP extracts features once over

the input image. To demonstrate the impact of this difference

to tagging performance, we also implemented SPPNet [30] as



CHAPTER 3. RECOGNIZE MULTIPLE CONCEPTS FROM IMAGES53

well as an architecture that integrates SPPNet with SVI on top.

Note that all methods, including both the baselines and our

proposed methods, share the same basic CNN architecture [42],

which itself already delivers good baseline performance [72]. In

our experiments, we focus on comparing how different tech-

niques can further improve the performance.

Evaluation metrics. We use three widely used metrics to study

the performance in different aspects. (1) Top-3 Recall/Precision

(Recall@3, Precision@3), (2) Top-5 Recall/Precision (Recall@5,

Precision@5), and (3) Mean Average Precision (MAP) [56]. Re-

call rates and precision scores measure the performance of a tag-

ging system in recommending a fixed number of tags for each

input image. The MAP score, on the other side, evaluates the

framework’s capacity in retrieving all relevant tags and rank

them as high as possible. Considering the serious imbalance

of tag distributions on both datasets, we follow the standard

protocol and adopt a two-fold metrics setup: per-image aver-

age performance and per-tag (class) average performance. The

former emphasizes more frequent tags, while the latter consid-

ers each tag class as equally important. A well-rounded model

should perform well in most of the metrics, in both forms.

3.4.2 Analysis of Results

The testing performances obtained on NUS-WIDE and YFC-

C100M are respectively shown in Table 3.2 and 3.3. Both per-
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image and per-tag performances are presented. Overall, the pro-

posed methods consistently outperform the baselines on different

metrics, clearly demonstrating its effectiveness. It is particular-

ly worth noting that the settings that incorporate both SVI and

bundle losses, i.e. RDSL+SVI and RDRL+SVI win 17 out of 20

metrics (on both datasets) by a reasonable margin. This shows

that these two techniques are complementary and therefore the

combination of them results in the best performance. Below, we

will analyze the results from different aspects.

Scaled-view integration. SVI aims to enhance the model’s ca-

pability of handling local association and scale variances. While

the baseline methods with Softmax or WARP losses are already

quite strong, we still observe improvements, especially on recall

rates, when SVI is incorporated. This is because the scaled lo-

cal views help to recover those tags referring to local regions or

objects.

Table 3.1: Comparison of models without SPP, with SPP and with SP-

P+SVI. Performances are measured by MAP in per-image and per-tag bases.

NUS-WIDE YFCC

MAPI MAPT MAPI MAPT

RDRL .7501 .6016 .2690 .2154

RDRL+SPP [30] .7530 .6045 .2834 .2238

RDRL+SPP [30]+SVI .7625 .6278 .2993 .2472

Spatial pyramid pooling (SPP) is another reasonable way to

incorporate information from multiple resolutions. It was demon-



CHAPTER 3. RECOGNIZE MULTIPLE CONCEPTS FROM IMAGES55

strated in the ImageNet challenge that it can improve recogni-

tion performance. However, SVI and SPP are essentially dif-

ferent. SVI focuses on the processing of inputs before feature

extraction, while SPP concerns about the pooling thereafter.

Therefore they can be seamlessly incorporated with each other.

We specifically conducted a set of experiments to study how

SVI and SPP work together. In particular, we consider three

settings: (1) AlexNet + RDRL loss, (2) AlexNet replaced by

SPPNet, and (3) SPPNet incorporated with SVI. The results

are shown in Table 3.1. First, the results confirm that SPP

can lead to moderate improvement. Then, the incorporation of

SVI can bring the performance to the next level. This suggests

that SVI can consistently boost the tagging performance over

a given base network, and more importantly, it can seamlessly

work with other techniques like SPP.

Contrastive bundle loss. From the experimental results, we also

observed performance gains due to the use of contrastive bundle

loss, e.g. Softmax vs. RDSL, and WARP vs. RDRL. Particular-

ly, we can see considerable increase in per-tag precision in most

of the time. This shows that bundle loss can guide the model’s

attention towards discriminative visual patterns, while alleviat-

ing the undesirable impact of imbalanced tag distribution.

Among all the loss functions compared in the experiments,

RDRL is often the best one. This shows that ranking based loss

functions are more suited for tagging task, while the bundling
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can further improve its performance, by contrasting across both

samples and tags.
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Figure 3.4: Per-tag recall rate gains over the baseline on NUS-WIDE with

k = 3. Tags are arranged in the revert order of their frequencies.
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Figure 3.5: Per-tag precision gains over the baseline on NUS-WIDE with

k = 3. Tags are arranged in the revert order of their frequencies.

Per-tag analysis. To obtain further insight, we visualize the per-

tag recall and precision scores on the NUS-WIDE dataset in

Figure 3.4 and Figure 3.5. In both figures, the performances are

reported as the improvements relative to the baseline. We can

see that RDRL+SVI improves the recall for 70 tag classes out

of 81, and improves the precision for 56 classes. Clearly, most of

the classes benefit from the contributions of SVI and RDRL. In

other words, the overall performance gain is based on universal

improvement instead of catering to a small number of frequent
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classes.

Performances on different datasets. It is worth noting that the

performances obtained on YFCC100M are clearly inferior to

those obtained on NUS-WIDE. This is ascribed to a variety of

reasons, which particularly include the nosiness of user tags and

the substantially increased tag space. Both would add to the

difficulties of accurate tagging.

On this more challenging data set, we can see even more obvi-

ous improvement when SVI and bundle losses are incorporated.

For example, RDRL+SVI brings the MAP from 0.175 to 0.234

as compared to the baseline using Softmax loss. This clearly

shows the significant role of the proposed techniques in tackling

real-world challenges.

Scalability of the bundle formulation. We verified the scalability

of the bundle formulation via experiments. Scalability requires

that when scaling to large tag space, it can still achieve good per-

formance, which is demonstrated in YFCC experiments, while

maintaining reasonable runtime cost. We can verify the second

requirement by examining the computation cost of a loss func-

tion and its bundle form. Using the settings in our experiments,

we calculated the empirical computation costs of the WARP

loss, which yield the best accuracy among non-bundle loss func-

tion, and its bundle form, the RDRL loss, as shown in Fig. 3.6.

To better understand the growth of computation cost as the tag
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Figure 3.6: Computation cost analysis of WARP loss and RDRL loss. (a)

shows the loss computation cost measured in arithmetic ops on NUW-WIDE

and YFCC dataset. (b) shows an synthetic study of loss computation costs

on YFCC dataset with reduced tag spaces.

space varies, we gradually reduce the tag space of YFCC dataset

from 1000 to 100. Then we measure the loss computation costs

of WARP and RDRL. For our RDRL, we use the bundle size

that we empirically found to obtain reasonable tagging accura-

cies. We can see that as the tag spaces grow, the runtime cost

grows sublinearly w.r.t the tag space size, demonstrating higher

scalability.

3.5 Discussion and Summary

In this part of thesis work, an new framework for image tagging

is proposed aiming to tackle two key challenges in real-world ap-

plications, namely local association and large tag space. It fol-
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low the strategy of combining multiple aspect of data, which are

scale, location, and conception categories in this case. Exper-

imental results show that through scaled view integration and

contrastive bundle loss, the proposed framework outperformed

state-of-the-art on two large datasets, and demonstrated supe-

rior scalability in face of a growing tag space.
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Table 3.2: Experimental results on the NUS-WIDE dataset dataset. Higher

numbers are preferred in all columns. The upper half of the table reflects the

per-image version of the evaluation metrics. The lower half deals with the

per-tag ones. The best performing entries in each column are marked with

bold fonts. Here “RDSL” and “RDRLrefer to models trained with restricted

dual softmax losses and restricted dual ranking losses. “SVI” denotes that

the model is trained with scaled-view integration.

Methods
NUS-WIDE - Per-Image

MAPI RecI@3 PrecI@3 RecI@5 PrecI@5

Random 0.002 0.04 0.03 0.07 0.03

Sigmoid 0.730 65.50 53.59 80.69 39.66

Softmax [26] 0.736 65.50 53.58 80.80 39.73

WARP [26] 0.750 66.05 54.03 81.43 40.03

RDSL 0.740 65.86 53.86 81.33 39.96

RDRL 0.750 66.23 54.17 81.65 40.11

Neighbor [55]+SVI 0.701 60.31 50.14 79.48 39.27

Softmax [26]+SVI 0.743 65.72 53.95 81.46 40.18

WARP [26]+SVI 0.759 66.76 54.81 82.25 40.57

RDSL+SVI 0.742 65.87 53.83 81.78 40.18

RDRL+SVI 0.763 67.46 54.73 82.71 40.44

Methods
NUS-WIDE - Per-Tag

MAPT RecT @3 PrecT @3 RecT @5 PrecT @5

Random 0.002 0.04 0.03 0.07 0.03

Sigmoid 0.553 44.23 37.22 53.21 25.18

Softmax [26] 0.568 45.81 38.31 57.33 25.37

WARP [26] 0.577 46.31 40.16 62.09 27.03

RDSL 0.603 46.10 40.11 62.13 27.93

RDRL 0.602 45.85 40.27 62.21 28.09

Neighbor [55]+SVI 0.573 42.82 37.15 56.61 24.19

Softmax [26]+SVI 0.621 47.30 40.30 62.30 28.10

WARP [26]+SVI 0.613 46.93 40.35 62.38 27.59

RDSL+SVI 0.636 49.72 40.96 64.46 28.38

RDRL+SVI 0.618 49.55 41.30 66.50 27.80
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Table 3.3: Experimental results on the YFCC dataset dataset. Higher num-

bers are preferred in all columns. The upper half of the table reflects the

per-image version of the evaluation metrics. The lower half deals with the

per-tag ones. The best performing entries in each column are marked with

bold fonts. Here “RDSL” and “RDRLrefer to models trained with restricted

dual softmax losses and restricted dual ranking losses. “SVI” denotes that

the model is trained with scaled-view integration.

Methods
YFCC - Per-Image

MAPI RecI@3 PrecI@3 RecI@5 PrecI@5

Random 0.000 0.01 0.00 0.00 0.00

Sigmoid 0.170 15.66 15.79 20.55 12.46

Softmax [26] 0.260 19.78 19.96 25.64 15.56

WARP [26] 0.265 20.47 20.66 26.58 16.12

RDSL 0.262 20.04 20.23 26.25 15.94

RDRL 0.269 21.08 21.32 27.81 16.90

Neighbor [55]+SVI 0.162 18.43 12.92 18.71 14.31

Softmax [26]+SVI 0.268 20.86 21.12 26.99 16.42

WARP [26]+SVI 0.274 20.95 21.22 27.21 16.55

RDSL+SVI 0.269 20.37 20.63 26.72 16.27

RDRL+SVI 0.283 22.25 22.55 28.91 17.61

Methods
YFCC - Per-Tag

MAPT RecT @3 PrecT @3 RecT @5 PrecT @5

Random 0.002 0.01 0.00 0.00 0.00

Sigmoid 0.103 6.15 12.30 8.31 10.11

Softmax [26] 0.175 9.79 19.53 12.86 16.11

WARP [26] 0.194 10.44 20.90 14.03 16.70

RDSL 0.183 9.39 21.30 13.10 16.70

RDRL 0.215 10.79 24.03 14.91 17.62

Neighbor [55]+SVI 0.154 10.33 19.43 12.67 11.36

Softmax [26]+SVI 0.188 11.03 20.20 14.20 15.00

WARP [26]+SVI 0.194 11.12 21.14 14.75 16.62

RDSL+SVI 0.188 9.70 22.90 13.16 17.65

RDRL+SVI 0.234 12.51 23.97 16.86 17.72



Chapter 4

Recognize Human Activity

from Videos

Although we have achieved exciting results on still images. There

is still a large gap between our computer vision systems and a

truly practical one. As the visual information we perceive every

moment are changing, it becomes necessary for the system to un-

derstanding videos. Human activity classification is a widely re-

searched topic in this scenario. However, analysis demonstrates

that it is still far from optimal even with the recent development

of deep learning techniques. And the intrinsic property of this

problem calls for a framework that can combine information of

carried in appearance, motion, and more importantly, long-term

temporal structures. Int this sense, we propose the temporal

segment networks framework to enhance the modeling capacity

of original convolutional neural networks from both spatial and

temporal dimensions. Our approach obtains the state-the-of-art

performance on the datasets of HMDB51 (69.4%) and UCF101

62
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(94.2%).

4.1 From Images to Videos

Video-based action recognition has drawn a significant amoun-

t of attention from the academic community [76, 89, 93, 61,

96, 21], because of its applications in many areas like securi-

ty and behavior analysis. Moving from images to videos, the

new inputs of video streams bring about a new dimension to

explore, time. For a video, the dynamics depicting the change

of appearances over time thus become an indispensable factor

in deciding its underlying action class. To achieve reasonable

performance, an action recognition system must rely on both

appearances and dynamics in the videos. However, extracting

these information is non-trivial due to the factors such as scale

variations, view point changes, and camera motions. Thus it

becomes crucial to design effective representations that can deal

with these challenges while preserve categorical information of

action classes. Recently, Convolution Networks (ConvNets) [47]

have witnessed great success in classifying images of objects,

scenes, and complex events [43, 77, 82, 102]. ConvNets have

also been introduced to solve the problem of video-based action

recognition [40, 76, 86, 109]. Deep ConvNets come with great

modeling capacity and are capable of learning discriminative

representation from raw visual data with the help of large-scale

supervised datasets. However, unlike image classification, end-
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to-end deep ConvNets remain unable to demonstrate significant

advantage over traditional hand-crafted features for video-based

action recognition.

We analyze that there are two major obstacles to successful-

ly applying ConvNets to video-based action recognition. First,

a video is a kind of spatial-temporal signal. Long-range tem-

poral structure plays an important role in understanding the

dynamics in action videos [64, 20, 94, 19]. But current state-of-

the-art ConvNet frameworks [76, 86] usually focus on modeling

appearances and short-term motions, thus lacking the capacity

to incorporate long-range temporal structure. Recently there

are a few efforts [88, 61, 15] trying to deal with this problem.

These methods, although working with longer video clips, are

mostly based on dense temporal sampling strategies which lead

to excessive computational cost. This inhibits them to take the

entire video as input and incurs the risk of missing important

information outside the sampled sequence. Second, in practice,

training deep ConvNets requires a large volume of training sam-

ples to achieve optimal performance. Due to the difficulty in da-

ta collection and annotation, current action recognition datasets

(e.g. UCF101 [78], HMDB51 [44]) possess quite limited training

samples compared with those for image classification (e.g. Im-

ageNet [11]). This can lead to severe over-fitting problems for

the learned models.

In this thesis work, we aim to study these two problems: 1)

how to design an effective and efficient video-level framework for
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learning ConvNets from video data; 2) how to learn the ConvNet

models given limited training samples. In particular, we build

our method on top of the successful two-stream architecture [76]

while dealing with the problems mentioned above. In terms of

temporal structure modeling, a key observation is the high re-

dundancy between consecutive frames in a video. Due to this

redundancy, densely sampling the frames, with the aim of mod-

eling the long-range temporal structure, can cause unnecessary

computational cost by repeatedly evaluating the ConvNets on

very similar frames. Thus a sparse temporal sampling strate-

gy will be more favorable in this case. Motivated by this ob-

servation, we develop a video-level framework, called temporal

segment network (TSN). It adopts a sparse temporal sampling

strategy, where it samples multiple short snippets at different

temporal locations from the entire video. The sampling strat-

egy is designed to make sampled snippets distribute uniformly

along the temporal dimension. A segmental structure is em-

ployed to aggregate information from the sampled snippets. In

this sense, temporal segment networks are capable of modeling

long-range temporal structure over the whole video. In addi-

tion, this sparse temporal sampling strategy guarantees that the

training computational cost of the temporal segment framework

is independent of durations of the training videos. This makes

it possible to perform end-to-end learning on the entire videos

with reasonable computational cost.

To fully reveal the potential of temporal segment network frame-
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work, we propose to use very deep ConvNet architectures [34, 77]

introduced recently. However, applying these architectures to

the action recognition datasets is troubled by the limited number

of training samples. To this end, we study a series of good prac-

tices in training the ConvNets models on video data, including

1) cross-modality pre-training; 2) regularization; 3) enhanced

data augmentation. Meanwhile, to fully utilize visual content

from videos, we empirically study four types of input modalities

to two-stream ConvNets, namely a single RGB image, stacked

RGB difference, stacked optical flow field, and stacked warped

optical flow field.

We perform experiments on two challenging action recogni-

tion datasets, namely UCF101 [78] and HMDB51 [44], to ver-

ify the effectiveness of our method. In experiments, models

learned using the temporal segment network strongly outper-

form the state-of-the-art on these two challenging action recog-

nition datasets. We also visualize the our learned two-stream

models and try to provide some insights for future action recog-

nition research.

4.2 Related Works

Action recognition has been extensively studied in past few

years [89, 23, 69, 22, 19]. In this section we review previous

works related to ours on two aspects: (1) convolutional networks

for action recognition, (2) modeling temporal structure.
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Convolutional Networks for Action Recognition. Sev-

eral works have been trying to design effective ConvNet architec-

tures for action recognition in videos [40, 76, 86, 35, 80]. Karpa-

thy et al. [40] tested ConvNets with deep structures on a large

dataset (Sports-1M). Simonyan et al. [76] designed two-stream

ConvNets containing spatial and temporal net by exploiting Im-

ageNet dataset for pre-training and calculating optical flow to

explicitly capture motion information. Tran et al. [86] explored

3D ConvNets [35] on the realistic and large-scale video datasets,

where they tried to learn both appearance and motion features

with 3D convolution operations. Sun et al. [80] proposed a fac-

torized spatio-temporal ConvNets and exploited different ways

to decompose 3D convolutional kernels. Recently, several works

focused on modeling long-range temporal structure with Con-

vNets [61, 88, 15]. However, these methods directly operated on

a longer continuous video streams. This means heavier compu-

tational cost for longer video streams. So these methods usually

process sequences of fixed lengths ranging from 64 to 120 frames.

It is non-trivial for these methods to learn from entire video due

to their limited temporal coverage. Our method differs from

these end-to-end deep ConvNets by its novel adoption of a s-

parse temporal sampling strategy, which enables efficient learn-

ing using the entire videos without the limitation of sequence

length.

Temporal Structure Modeling. Many research works

have been devoted to model the temporal structure for action
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recognition [64, 20, 94, 70, 95, 19]. Gaidon et al. [20] annotated

each atomic action for each video and proposed Actom Sequence

Model (ASM) for action detection. Niebles et al. [64] proposed

to use latent variables to model the temporal decomposition of

complex actions, and resorted to the Latent SVM [18] to learn

the model parameters in an iterative approach. Wang et al. [94]

and Pirsiavash et al. [70] extended the temporal decomposition

of complex action into a hierarchical manner by using Latent Hi-

erarchical Model (LHM) and Segmental Grammar Model (SG-

M), respectively. Wang et al. [95] designed a sequential skeleton

model (SSM) to capture the relations among dynamic-poselets,

and performed spatio-temporal action detection. Fernando [19]

modeled the temporal evolution of BoVW representations for

action recognition. These methods, however, are still not able

to assemble an end-to-end learning scheme for modeling the tem-

poral structure. The proposed temporal segment network, while

also emphasizing this principle, is the first framework for end-

to-end temporal structure modeling on the entire videos.

4.3 Action Recognition with Temporal Seg-

ment Networks

In this section, we give detailed descriptions of performing ac-

tion recognition with temporal segment networks. Specifically,

we first introduce the basic concepts in the framework of tem-

poral segment network. Then, we study the good practices in
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learning two-stream ConvNets within the temporal segment net-

work framework. Finally, we describe the testing details of the

learned two-stream ConvNets.

4.3.1 Temporal Segment Networks

As we discussed in Sec. 4.1, an obvious problem of current two-

stream ConvNets is their inability in modeling long-range tem-

poral structure. This is mainly due to their limited access to

temporal context as they are designed to operate only on a s-

ingle frame (spatial networks) or a single stack of frames in a

short snippet (temporal network). However, complex actions,

such as sports action, comprise multiple stages spanning over a

relatively longer time. It would be quite a loss failing to utilize

long-range temporal structures in these actions into ConvNet

training. To tackle this issue, as shown in Figure 4.1, we propose

temporal segment network, a video-level framework, to enable

to model dynamics throughout the whole video.

Specifically, our proposed temporal segment network frame-

work, aiming to utilize the visual information of entire videos

to perform video-level prediction, is also composed of spatial

stream ConvNets and temporal stream ConvNets. Instead of

working on single frames or frame stacks, temporal segment net-

works operate on a sequence of short snippets sparsely sampled

from the entire video. Each snippet in this sequence will pro-

duce its own preliminary prediction of the action classes. Then
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a consensus among the snippets is attained as the video-level

prediction. In the learning process, the loss values of video-level

predictions, other than those of snippet-level predictions which

were used in two-stream ConvNets, are optimized by iteratively

updating the model parameters.

Formally, given a video V , we divide it into K segments

{S1, S2, · · · , SK} of equal durations. Then, the temporal seg-

ment network models a sequence of snippets as follows:

TSN(T1, T2, · · · , TK) = H(G(F(T1;W),F(T2;W), · · · ,F(TK ;W))). (4.1)

Here (T1, T2, · · · , TK) is a sequence of snippets. Each snippet

Tk is randomly sampled from its corresponding segment Sk.

F(Tk; W) is the function representing a ConvNet with param-

eters W which operates on the short snippet Tk and produces

class scores for all the classes. The segmental consensus function

G combines the outputs from different short snippets to obtain

a consensus of class hypothesis among them. Based on this con-

sensus, the prediction functionH predicts the probability of each

action class for the whole video. Here we choose the widely used

Softmax function for H. Combining with standard categorical

cross-entropy loss, the final loss function regarding the segmen-

tal consensus G = G(F(T1; W),F(T2; W), · · · ,F(TK ; W)) is

formed as

L(y,G) = −
C∑
i=1

yi

(
Gi − log

C∑
j=1

expGj

)
, (4.2)

where C is the number of action classes and yi the groundtruth
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Figure 4.1: Temporal segment network: One input video is divided into K

segments and a short snippet is randomly selected from each segment. The

class scores of different snippets are fused by an the segmental consensus

function to yield segmental consensus, which is a video-level prediction. Pre-

dictions from all modalities are then fused to produce the final prediction.

ConvNets on all snippets share parameters.

label concerning class i. In experiments, the number of snippets

K is set to 3 according to previous works on temporal mod-

eling [20, 94]. The form of consensus function G remains an

open question. Here we use the simplest form of G, where Gi =

g(Fi(T1), . . . ,Fi(TK)). It is therefore the class-independent ag-

gregation from snippet-level predictions, depicted by the aggre-

gation function g. We empirically evaluated several forms form

aggregation function g including evenly averaging, maximum,

and weighted averaging in our experiments. Among them, even-

ly averaging is used to report our final recognition accuracies.

This temporal segment network is differentiable or at least

has subgradients, depending on the aggregation function g, de-

pending on the choice of g. This allows us to utilize the multi-
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ple snippets to jointly optimize the model parameters W with

standard back-propagation algorithms. In the back-propagation

process, the gradients of model parameters W with respect to

the loss value L can be derived as

∂L(y,G)

∂W
=
∂L
∂G

K∑
k=1

∂G
∂F(Tk)

∂F(Tk)

∂W
, (4.3)

where K is number of segments temporal segment network uses.

When we use a gradient-based optimization method, like s-

tochastic gradient descent (SGD), to learn the model parame-

ters, Eq. 4.3 guarantees that the parameter updates are utilizing

the segmental consensus G derived from all snippet-level predic-

tion. Optimized in this manner, temporal segment networkcan

learn model parameters from the entire video rather than a short

snippet. Meanwhile, by fixing K for all videos we assemble a

sparse temporal sampling strategy, where the sampled snippets

contain only a small portion of the frames. It drastically re-

duces the computational cost for evaluating ConvNets on the

frames, compared with previous works using densely sampled

frames [61, 88, 15].

4.3.2 Learning Temporal Segment Networks

temporal segment network provides a solid framework to per-

form video-level learning, but to achieve optimal performance, a

few practical concerns have to be taken care of, for example the

limited numberof training samples. To this end, we study a se-
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ries of good practices in training deep ConvNets on video data,

which are also directly applicable in learning temporal segment

networks.

Network Architectures. Network architecture is an im-

portant factor in neural network design. Several works have

verified that deeper structures improve object recognition per-

formance [77, 82]. However, the original two-stream ConvNet-

s [76] employed a relatively shallow network structure (Clari-

faiNet [108]). In this work, we choose the Inception with Batch

Normalization (BN-Inception) [34] as building block, due to its

good balance between accuracy and efficiency. We adapt the

original BN-Inception architecture to the design of two-stream

ConvNets. Like in the original two-stream ConvNets [76], the

spatial stream ConvNet operates on a single RGB images, and

the temporal stream ConvNet takes a stack of consecutive opti-

cal flow fields as input.

Network Inputs. We are also interested in exploring more

input modalities to enhance the discriminative power of tem-

poral segment networks. Originally, the two-stream ConvNets

used RGB images for the spatial stream and stacked optical

flow fields for the temporal stream. Here, we propose to study

two extra modalities, namely RGB difference and warped optical

flow fields.

A single RGB image usually encodes static appearance at a

specific time point and lacks the contextual information about

previous and next frames. As shown in Figure 4.2, RGB differ-
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ence between two consecutive frames describe the appearance

change, which may correspond to the motion salient region. In-

spired by [80], We experiment with adding stacked RGB differ-

ence as another input modality and investigate its performance

in action recognition.

The temporal stream ConvNets take optical flow field as in-

put and aim to capture the motion information. In realistic

videos, however, there usually exists camera motion, and opti-

cal flow fields may not concentrate on the human action. As

shown in Figure 4.2, a remarkable amount of horizontal move-

ment is highlighted in the background due to the camera mo-

tion. Inspired by the work of improved dense trajectories [89],

we propose to take warped optical flow fields as additional in-

put modality. Following [89], we extract the warped optical flow

by first estimating homography matrix and then compensating

camera motion. As shown in Figure 4.2, the warped optical

flow suppresses the background motion and makes motion con-

centrate on the actor.

Network Training. As the datasets for action recognition

are relatively small, training deep ConvNets is challenged by

the risk of over-fitting. To mitigate this problem, we design

several strategies for training the ConvNets in temporal segment

networks as follows.

Cross Modality Pre-training. Pre-training has turned out to

be an effective way to initialize deep ConvNets when the target

dataset does not have enough training samples [76]. As spa-
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Figure 4.2: Examples of four types of input modality: RGB images, RGB

difference, optical flow fields (x,y directions), and warped optical flow fields

(x,y directions)

tial networks take RGB images as input, it is natural to exploit

models trained on the ImageNet [11] as initialization. For other

modalities such as optical flow field and RGB difference, they es-

sentially capture different visual aspects of video data and their

distributions are different from that of RGB images. We come

up with a cross modality pre-training technique in which we u-

tilize RGB models to initialize the temporal networks. First, we

discretize optical flow fields into the interval from 0 to 255 by a

linear transformation. This step makes the range of optical flow

fields to be the same with RGB images. Then, we modify the

weights of first convolution layer of RGB models to handle the

input of optical flow fields. Specifically, we average the weight-

s across the RGB channels and replicate this average by the

channel number of temporal network input. This initialization

method works pretty well for temporal networks and reduce the

effect of over-fitting in experiments.
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Regularization Techniques. Batch Normalization [34] is an

important component to deal with the problem of covariate shift.

In the learning process, batch normalization will estimate the

activation mean and variance within each batch and use them

to transform these activation values into a standard Gaussian

distribution. This operation speeds up the convergence of train-

ing but also leads to over-fitting in the transferring process, due

to the biased estimation of activation distributions from limit-

ed number of training samples. Therefore, after initialization

with pre-trained models, we choose to freeze the mean and vari-

ance parameters of all Batch Normalization layers except the

first one. As the distribution of optical flow is different from

the RGB images, the activation value of first convolution layer

will have a different distribution and we need to re-estimate the

mean and variance accordingly. We call this strategy as partial

BN. Meanwhile, we add a extra dropout layer after the global

pooling layer in BN-Inception architecture to further reduce the

effect of over-fitting. The dropout ratio is set as 0.8 for spatial

stream ConvNets and 0.7 for temporal stream ConvNets.

Data Augmentation. Data augmentation can generate di-

verse training samples and prevent severe over-fitting. In the

original two-stream ConvNets, random cropping and horizontal

flipping are employed to augment training samples. We exploit

two new data augmentation techniques: corner cropping and

scale-jittering. In corner cropping technique, the extracted re-

gions are only selected from the corners or the center of the
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image to avoid implicitly focusing on the center area of a image.

In multi-scale cropping technique, we adapt the scale jittering

technique [77] used in ImageNet classification to action recogni-

tion. We present an efficient implementation of scale jittering.

We fix the size of input image or optical flow fields as 256×340,

and the width and height of cropped region are randomly select-

ed from {256, 224, 192, 168}. Finally, these cropped regions will

be resized to 224 × 224 for network training. In fact, this im-

plementation not only contains scale jittering, but also involves

aspect ratio jittering.

4.3.3 Testing Temporal Segment Networks

Finally, we present our testing method for temporal segment net-

works. Due to the fact that all snippet-level ConvNets share the

model parameters in temporal segment networks , the learned

models can perform frame-wise evaluation as normal ConvNets.

This allows us to carry out fair comparison with models learned

without the temporal segment network framework. Specifically,

we follow the testing scheme of the original two-stream Con-

vNets [76], where we sample 25 RGB frames or optical flow

stacks from the action videos. Meanwhile, we crop 4 corner-

s and 1 center, and their horizontal flipping from the sampled

frames to evaluate the ConvNets. For the fusion of spatial and

temporal stream networks, we take a weighted average of them.

When learned within the temporal segment networkframework,
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the performance gap between spatial stream ConvNets and tem-

poral stream ConvNets is much smaller than that in the original

two-stream ConvNets. Based on this fact, we give more credits

spatial stream by setting its weight as 1 and the one of tempo-

ral stream as 1.5. When both normal and warped optical flow

fields are used, the weight of temporal stream is divided to 1

for optical flow and 0.5 for warped optical flow. It is described

in Sec. 4.3.1 that the segmental consensus function is applied

before the Softmax normalization. To test the models in com-

pliance with their training, we fuse the prediction scores of 25

frames and different streams before Softmax normalization.

4.4 Experiments

In this section, we first introduce the evaluation datasets and

the implementation details of our approach. Then, we explore

the proposed good practices for learning temporal segment net-

works. After this, we demonstrate the importance of modeling

long-term temporal structures by applying the temporal seg-

ment network framework. We also compare the performance of

our method with the state-of-the-art. Finally, we visualize our

learned ConvNet models.

4.4.1 Datasets and Implementation Details

We conduct experiments on two large action datasets, name-

ly HMDB51 [44] and UCF101 [78]. The UCF101 dataset con-
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tains 101 action classes and 13, 320 video clips. We follow the

evaluation scheme of the THUMOS13 challenge [38] and adop-

t the three training/testing splits for evaluation. The HMD-

B51 dataset is a large collection of realistic videos from vari-

ous sources, such as movies and web videos. The dataset is

composed of 6, 766 video clips from 51 action categories. Our

experiments follow the original evaluation scheme using three

training/testing splits and report average accuracy over these

splits.

We use the mini-batch stochastic gradient descent algorithm

to learn the network parameters, where the batch size is set to

256 and momentum set to 0.9. We initialize network weights

with pre-trained models from ImageNet [11]. We set a small-

er learning rate in our experiments. For spatial networks, the

learning rate is initialized as 0.01 and decreases to its 1
10 every

2, 000 iterations. The whole training procedure stops at 4, 500

iterations. For temporal networks, we initialize the learning rate

as 0.005, which reduces to its 1
10 every 12, 000 iterations. The

maximum iteration is set as 30, 000. Concerning data augmenta-

tion, we use the techniques of location jittering, horizontal flip-

ping, corner cropping, and scale jittering, as specified in Section

4.3.2. For the extraction of optical flow and warped optical flow,

we choose the TVL1 optical flow algorithm [107] implemented

in OpenCV with CUDA. To speed up training, we employ a

data-parallel strategy with multiple GPUs, implemented with
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our modified version of Caffe [37] and OpenMPI 1.

4.4.2 Exploration Study

In this section, we focus on the investigation the good practices

described in Sec. 4.3.2, including the training strategies and the

input modalities. In this exploration study, we use the two-

stream ConvNets with very deep architecture adapted from [34]

and perform all experiments on the split 1 of UCF101 dataset.

We propose two training strategies in Section 4.3.2, name-

ly cross modality pre-training and partial BN with dropout.

Specifically, we compare four settings: (1) training from scratch,

(2) only pre-train spatial stream as in [76], (3) with cross modal-

ity pre-training, (4) combination of cross modality pre-training

and partial BN with dropout. The results are summarized in

Table 4.1. First, we see that the performance of training from

scratch is much worse than that of the original two-stream Con-

vNets (baseline), which implies carefully designed learning s-

trategy is necessary to reduce the risk of over-fitting, especially

for spatial networks. Then, We resort to the pre-training of the

spatial stream and cross modality pre-training of the temporal

stream to help initialize two-stream ConvNets and it achieves

better performance than the baseline. We further utilize the

partial BN with dropout to regularize the training procedure,

which boosts the recognition performance to 92.0%.

1https://github.com/yjxiong/caffe
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Table 4.1: Exploration of different training strategies for two-stream Con-

vNets on the UCF101 dataset (split 1).

Training setting Spatial ConvNets Temporal ConvNets Two-Stream

Baseline [76] 72.7% 81.0% 87.0%

From Scratch 48.7% 81.7% 82.9%

Pre-train Spatial(same as [76]) 84.1% 81.7% 90.0%

+ Cross modality pre-training 84.1% 86.6% 91.5%

+ Partial BN with dropout 84.5% 87.2% 92.0%

We propose two new types of modalities in Section 4.3.2:

RGB difference and warped optical flow fields. Results on com-

paring the performance of different modalities are reported in

Table 4.2. These experiments are carried out with all the good

practices verified in Table 4.1. We first observe that the com-

bination of RGB images and RGB differences boosts the recog-

nition performance to 87.3% . This result indicates that RGB

images and RGB difference may encode complementary informa-

tion. Then it is shown that optical flow and warped optical flow

yield quite similar performance (87.2% vs. 86.9%) and the fu-

sion of them can improve the performance to 87.8%. Combining

all of four modalities leads to an accuracy of 91.7%. As RGB

difference may describe similar but unstable motion patterns,

we also evaluate the performance of combining the other three

modalities and this brings better recognition accuracy (92.3%

vs 91.7%). We conjecture that the optical flow is better at cap-

turing motion information and sometimes RGB difference may

be unstable for describing motions. On the other hand, RGB
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Table 4.2: Exploration of different input modalities for two-stream ConvNets

on the UCF101 dataset (split 1).

Modality Performance

RGB Image 84.5%

RGB Difference 83.8%

RGB Image + RGB Difference 87.3%

Optical Flow 87.2%

Warped Flow 86.9%

Optical Flow + Warped Flow 87.8%

Optical Flow + Warped Flow + RGB 92.3%

All Modalities 91.7%

Table 4.3: Exploration of different segmental consensus functions for tempo-

ral segment networks on the UCF101 dataset (split 1).

Consensus Function Spatial ConvNets Temporal ConvNets Two-Stream

Max 85.0% 86.0% 91.6%

Average 85.7% 87.9% 93.5%

Weighted Average 86.2% 87.7% 92.4%

difference may serve as a low-quality, high-speed alternative for

motion representations.

4.4.3 Evaluation of Temporal Segment Networks

In this subsection, we focus on the study of the temporal seg-

ment network framework. We first study the effect of segmental

consensus function and then compare different ConvNet archi-

tectures on the split 1 of UCF101 dataset. For fair comparison,

we only use RGB images and optical flow fields for input modal-

ities in this exploration. As mentioned in Sec 4.3.1, the number
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of segments K is set to 3.

In Eq. (4.1), a segmental consensus function is defined by its

aggregation function g. Here we evaluate three candidates: (1)

max pooling, (2) average pooling, (3) weighted average, for the

form of g. The experimental results are summarized in Table

4.3. We see that average pooling function achieves the best per-

formance. So in the following experiments, we choose average

pooling as the default aggregation function. Then we compare

the performance of different network architectures and the re-

sults are summarized in Table 4.4. Specifically, we compare

three very deep architectures: BN-Inception [34], GoogLeNet

[82], and VGGNet-16 [77], all these architectures are trained

with the good practices aforementioned. Among the compared

architectures, the very deep two-stream ConvNets adapted from

BN-Inception [34] achieves the best accuracy of 92.0%. This is

in accordance with its better performance in the image classi-

fication task. So we choose BN-Inception [34] as the ConvNet

architecture for temporal segment networks.

With all the design choices set, we now apply the temporal

segment network (TSN) to the action recognition. The result

is illustrated in Table 4.4. A component-wise analysis of the

components in terms of the recognition accuracies is also pre-

sented in Table 4.5. We can see that temporal segment networkis

able to boost the performance of the model even when all the

discussed good practices are applied. This corroborates that

modeling long-term temporal structures is crucial for better un-
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Table 4.4: Exploration of different very deep ConvNet architectures on the

UCF101 dataset (split 1). “BN-Inception+TSN” refers to the setting where

the temporal segment networkframework is applied on top of the best per-

forming BN-Inception [34] architecture.

Training setting Spatial ConvNets Temporal ConvNets Two-Stream

Clarifai [76] 72.7% 81.0% 87.0%

GoogLeNet 77.1% 83.9% 89.0%

VGGNet-16 79.8% 85.7% 90.9%

BN-Inception 84.5% 87.2% 92.0%

BN-Inception+TSN 85.7% 87.9% 93.5%

Table 4.5: Component analysis of the proposed method on the UCF101

dataset (split 1). From left to right we add the components one by one.

BN-Inception [34] is used as the ConvNet architecture.

Component Basic

Two-Stream [76]

Cross-Modality

Pre-training

Partial BN

with dropout

Temporal

Segment Networks

Accuracy 90.0% 91.5 92.0% 93.5%

derstanding of action in videos. And it is achieved by temporal

segment networks.

4.4.4 Comparison with the State of the Art

After exploring of the good practices and understanding the ef-

fect of temporal segment network, we are ready to build up our

final action recognition method. Specifically, we assemble three

input modalities and all the techniques described as our final

recognition approach, and test it on two challenging dataset-

s: HMDB51 and UCF101. The results are summarized in Ta-
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Table 4.6: Comparison of our method based on temporal segment net-

work(TSN) with other state-of-the-art methods. We separately present the

results of using two input modalities (RGB+Flow) and three input modalities

(RGB+Flow+Warped Flow).

HMDB51 UCF101

DT+MVSV [5] 55.9% DT+MVSV [5] 83.5%

iDT+FV [89] 57.2% iDT+FV [90] 85.9%

iDT+HSV [69] 61.1% iDT+HSV [69] 87.9%

MoFAP [97] 61.7% MoFAP [97] 88.3%

Two Stream [76] 59.4% Two Stream [76] 88.0%

VideoDarwin [19] 63.7% C3D (3 nets) [86] 85.2%

MPR [63] 65.5% Two stream +LSTM [61] 88.6%

FSTCN (SCI fusion) [80] 59.1% FSTCN (SCI fusion) [80] 88.1%

TDD+FV [96] 63.2% TDD+FV [96] 90.3%

LTC [88] 64.8% LTC [88] 91.7%

KVMF [110] 63.3% KVMF [110] 93.1%

TSN (2 modalities) 68.5% TSN (2 modalities) 94.0%

TSN (3 modalities) 69.4% TSN (3 modalities) 94.2%

ble 4.6, where we compare our method with both traditional

approaches such as improved trajectories (iDTs) [89], MoFAP

representations [97], and deep learning representations, such as

3D convolutional networks (C3D) [86], trajectory-pooled deep-

convolutional descriptors (TDD) [96], factorized spatio-temporal

convolutional networks (FSTCN) [80], long term convolution net-

works (LTC) [88], and key volume mining framework (KVMF).

Our best result outperforms other methods by 3.9% on the H-

MDB51 dataset, and 1.1% on the UCF101 dataset. The superi-

or performance of our methods demonstrates the effectiveness of

temporal segment networkand justifies the importance of long-
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Figure 4.3: Visualization of ConvNet models for action recognition using

DeepDraw [1]. We compare three settings: (1) without pre-train; (2) with

pre-train; (3) with temporal segment network. For spatial ConvNets, we plot

three generated visualization as color images. For temporal ConvNets, we

plot the flow maps of x (left) and y (right) directions in gray-scales. Note all

these images are generated from purely random pixels.

term temporal modeling.

4.4.5 Model Visualization

Besides recognition accuracies, we would like to attain further

insight into the learned ConvNet models. In this sense, we adopt

the DeepDraw [1] toolbox. This tool conducts iterative gradient

ascent on input images with only white noises. Thus the output

after a number of iterations can be considered as class visualiza-

tion based solely on class knowledge inside the ConvNet model.

The original version of the tool only deals with RGB data. To

conduct visualization on optical flow based models, we adapt the
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tool to work with our temporal ConvNets. As a result, we for the

first time visualize interesting class information in action recog-

nition ConvNet models. We randomly pick five classes from the

UCF101 dataset, Taichi, Punch, Diving, Long Jump, and Biking

for visualization. The results are shown in Fig. 4.3. For both

RGB and optical flow, we visualize the ConvNet models learned

with following three settings: (1) without pre-training; (2) only

with pre-training; (3) with temporal segment network.

Generally speaking, models with pre-training are more ca-

pable of representing visual concepts than those without pre-

training. One can see that both spatial and temporal models

without pre-training can barely generate any meaningful visual

structure. With the knowledge transferred from the pre-training

process, the spatial and temporal models are able to capture

structured visual patterns.

It is also easy to notice that the models, trained with only

short-term information such as single frames, tend to mistake

the scenery patterns and objects in the videos as significant ev-

idences for action recognition. For example, in the class “Div-

ing”, the single-frame spatial stream ConvNet mainly looks for

water and diving platforms, other than the person performing

diving. Its temporal stream counterpart, working on optical

flow, tends to focus on the motion caused by waves of surface

water. With long-term temporal modeling introduced by tem-

poral segment network, it becomes obvious that learned models

focus more on humans in the videos, and seem to be modeling
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the long-range structure of the action class. Still consider “Div-

ing” as the example, the spatial ConvNet with temporal segment

networknow generate a image that human is the major visual

information. And different poses can be identified in the image,

depicting various stages of one diving action. This suggests that

models learned with the proposed method may perform better,

which is well reflected in our quantitative experiments.

4.5 Discussion and Summary

In this thesis work, we have introduced temporal segment net-

work, a video level-framework aiming to model long-term tem-

poral structure in action videos. The ideas of sparse temporal

sampling strategy and video-level supervision make it an effi-

cient and effective framework for video-based action recognition.

The framework is a strict realization the idea of combining mul-

tiple aspect data, as it utilizes both appearances, motion, and

temporal structures of videos. The superior performance of the

temporal segment networkframework is also justified by careful-

ly designed visualization of the learned models. Compared with

previous works on this problem, the described method not only

delivers convincing performance, but also shows many possibil-

ities where new research can be conducted upon.
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Conclusion

This thesis work mainly focus on high-level visual understand-

ing, with emphasize on combining multiple aspect data in the

learning and prediction. Three projects are finished in this

thesis: 1)recognize complex events from images by fusing deep

channels, 2)multi-label image tagging by uniting different scales,

locations, and concept categories, 3)human activity recognition

from videos by combining motion, appearances, and temporal

structures. We hope this thesis serves as an good example how

to deal with high-level visual understanding tasks and benefits

other research works.

In the first part of the thesis work, a novel framework for

event recognition from still images is proposed. It combines

multiple channels of deep networks to effectively analysis the

many semantic aspects of a complex event. The utilized infor-

mation ranges from apparent appearances to complicated inter-

actions between human and surrounding environment. A unified

89
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deep network architecture is devised to perform the combina-

tion. Quantitative experimental evaluations on multiple dataset

demonstrate that it outperforms state-of-the-art methods.

Then in the second part of the thesis, we apply the idea of

combining multiple aspect of data to the problem of image tag-

ging. A novel framework is proposed to unite visual information

scattered in various scales and locations on the images, and con-

trastively learn the visual concepts to be tagged. The proposed

techniques of Scaled View Integration and Contrast Based Learn-

ing results to a simple yet powerful deep architecture. Experi-

mental results show improved performance over state-of-the-art

methods, which corroborates the superiority of our framework.

As the last part of the thesis work, the idea of combining

multiple aspect of information is extended to the temporal side,

when we study the problem of human activity recognition from

videos. We propose a unified framework, called temporal seg-

ment networks (TSN), to incorporate appearances, short-term

motion patterns, and long-term temporal structures. An end-to-

end learning scheme is devised to learn from all these aspects of

video data, resulting in a method that is efficient in both learn-

ing and inference. Significant improvement over other state-of-

the-art methods is observed in experimental analysis. Further

visualization of the learned models also justifies superiority of

the proposed framework and demonstrates the importance of

combining the information from the aspects above.
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5.1 Future Works

The works demonstrated in this thesis work show that our ap-

proaches, by combining multiple aspects of data, can lead to

promising results in various tasks of high-level visual under-

standing in real world. But there are still a lot of open questions

to be explored. In our future works, we will further investigate

how to devise a principled approach to the integration of infor-

mation in the context of deep learning. Specifically, we would

like to propose a framework that can jointly learn from the exist-

ing large corpus of image and videos. Starting from current su-

pervised learning scheme, we would like go beyond to exploring

the possibility of performing weakly-supervised or unsupervised

learning by utilizing the coherence of multiple data aspects.
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